[1]张廷克,李闽榕,潘启龙. 中国核能发展报告(2020)[M]. 北京:社会科学文献出版社, 2020:1-19.
ZHANG Tingke, LI Minrong, PAN Qilong. The Report on the Development of China’s Nuclear Energy (2020)[M]. Beijing:Social Sciences Academic Press (CHINA), 2020:1-19.
[2]徐海涛. 快堆结构材料综述[J]. 核科学与工程, 2008(2):129-133.
XU Haitao. A Review of Fast Reactor Structural Materials[J]. Nuclear Science and Engineering, 2008(2):129-133.
[3]KOO G H, YOON J H. Inelastic Material Models of Type 316H for Elevated Temperature Design of Advanced High Temperature Reactors[J]. Energies, 2020, 13(17):4548.
[4]ZHAO L, QI X Y, XU L Y, et al. Tensile Mechanical Properties, Deformation Mechanisms, Fatigue Behavior and Fatigue Life of 316H Austenitic Stainless Steel:Effects of Grain Size[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 44:533-550.
[5]JOHNSON G R, COOK W H. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperature[J].Engineering Fracture Mechanics, 1983, 21:541-548.
[6]MOLINARI A, RAVICHANDRAN G. Constitutive Modeling of High-strain-rate Deformation in Metals Based on the Evolution of an Effective Microstructural Length[J]. Mechanics of Materials, 2005, 37(7):737-752.
[7]SHI H, MCLAREN A J, SELLARS C M, et al. Constitutive Equations for High Temperature Flow Stress of Aluminum Alloys[J]. Materials Science & Technology, 1997, 13(3):210-216.
[8]BODNER S R, PARTOM Y. Constitutive Equations for Elastic-viscoplastic Strain-hardening Materials[J]. Journal of Applied Mechanics, 1975, 42(2):385-389.
[9]RUSINEK A, KLEPACZKO J R. Shear Testing of a Sheet Steel at Wide Range of Strain Rates and a Constitutive Relation with Strain-rate and Temperature Dependence of the Flow Stress[J]. International Journal of Plasticity, 2001, 17(1):87-115.
[10]ZERILLI P J, ARMSTRONG R W. Dislocation-mechanics-based Constitutive Relations for Material Dynamics Calculations[J]. Journal of Applied Physics 1987, 61:1816-1825.
[11]SHROT A, BKER M. Determination of Johnson-Cook Parameters from Machining Simulations[J]. Computational Materials Science, 2012, 52(1):298-304.
[12]MEYER H W, KLEPONIS D S. Modeling the High Strain Rate Behavior of Titanium Undergoing Ballistic Impact and Penetration[J]. International Journal of Impact Engineering, 2001, 26(1):509-521.
[13]李国和. 基于线性扰动分析的高速切削过程绝热剪切预测研究[D]. 大连:大连理工大学, 2009.
LI Guohe. Prediction of Adiabatic Shear in High Speed Machining Based on Linear Pertubation Analysis[D]. Dalian:Dalian University of Technology, 2009.
[14]TOUNSI N, VINCENTI J, OTHO A, et al. From the Basic Mechanics of Orthogonal Metal Cutting toward the Identification of the Constitutive Equation[J]. International Journal of Machine Tools and Manufacture, 2002, 42(12):1373-1383.
[15]潘鹏飞,宋华伟,任国旗,等. 基于正交切削理论的熔石英高温本构参数的逆向识别[J]. 中国科学:技术科学, 2020, 50(11):18-28.
PAN Pengfei, SONG Huawei, REN Guoqi, et al. Reverse Identification of High-temperature Constitutive Parameters of Fused Silica Based on Orthogonal Cutting Theory[J]. Scientia Sinica Technologica, 2020, 50(11):18-28.
[16]陈冰,刘卫,罗明,等. 基于直角切削的高温合金John-Cook本构参数逆向识别[J]. 机械工程学报, 2019, 55(7):217-224.
CHEN Bing, LIU Wei, LUO Ming, et al. Reverse Identification of John-Cook Constitutive Parameters of Superalloy Based on Orthogonal Cutting[J]. Journal of Mechanical Engineering, 2019, 55(7):217-224.
[17]MERCHANT M E. Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip[J]. Journal of Applied Physics, 1945, 16(5):267-275.
[18]OXLEY P L B. The Mechanics of Machining:an Analytical Approach to Assessing Machinability[M].West Sussex, England:Ellis Horwood Ltd., 1989:279-287.
[19]ASTAKHOV V P, OSMAN M O M, HAYAJNEH M T. Re-evaluation of the Basic Mechanics of Orthogonal Metal Cutting:Velocity Diagram, Virtual Work Equation and Upper-bound Theorem[J]. International Journal of Machine Tools & Manufacture, 2001, 41(3):393-418.
[20]SHI B,ATTIA H,TOUNSI N. Identification of Material Constitutive Laws for Machining—Part I:an Analytical Model Describing the Stress,Strain,Strain Rate,and Temperature Fields in the Primary Shear Zone in Orthogonal Metal Cutting[J]. Journal of Manufacturing Science & Engineering,2010,132(5):998-1008.
[21]LOEWEN E G, SHAW M C. On the Analysis of Cutting-tool Temperatures[J]. Transactions of ASME, 1954, 76(2):217-225.
[22]JAEGER J C. Moving Sources of Heat and the Temperature at Sliding Contacts[J]. Proceedings of the Royal Society of New South Wales, 1942, 76:203-224.
[23]龚纯,王正林. 精通MATLAB最优化计算[M]. 北京:电子工业出版社, 2009:270-312.
GONG Chun, WANG Zhenglin. Proficient in MATLAB Optimization Calculation[M]. Beijing:Publishing House of Electronics Industry, 2009:270-312.
[24]OZLU E, BUDAK E, MOLINARI A. Analytical and Experimental Investigation of Rake Contact and Friction Behavior in Metal Cutting[J]. International Journal of Machine Tools & Manufacture, 2009, 49(11):865-875.
[25]陈日曜. 金属切削原理[M]. 北京:机械工业出版社, 2012:33-96.
CHEN Riyao. Fundamentals of Metal[M]. Beijing:China Machine Press, 2012:33-96.
|