摘要: 内河航运是现代综合运输体系的重要组成部分,实时和高精度的船舶轨迹预测方法能够有效规避水上交通事故、增强船舶自动化与智能化监管能力。针对现有内河船舶轨迹预测方法精度不高的问题,以提高船舶轨迹短期预测精度为目标,综合使用待测船舶近期船舶自动识别系统(AIS)数据和历史AIS数据,基于轨迹与航速和航向间的内在联系以及内河航道特点,构建了面向航速和航向预测的时域卷积网络模型、船舶轨迹动力学方程模型、自适应双隐层径向基函数网络等模型,提出了基于多模型融合的船舶轨迹预测方法。实验结果表明,所提方法轨迹预测精度有明显提高,并能满足实时性要求。
中图分类号:
张阳, 高曙, 何伟, 蔡菁. 基于多模型融合的内河船舶航行轨迹预测方法[J]. 中国机械工程, 2022, 33(10): 1142-1152.
ZHANG Yang, GAO Shu, HE Wei, CAI Jing. Navigation Trajectory Prediction Method of Inland Ships Based on Multi-model Fusion[J]. China Mechanical Engineering, 2022, 33(10): 1142-1152.