中国机械工程 ›› 2022, Vol. 33 ›› Issue (10): 1178-1188.DOI: 10.3969/j.issn.1004-132X.2022.10.006

• 先进水路交通装备与智能系统专辑(续) • 上一篇    下一篇

基于多尺度时域平均分解和模糊熵的船用风机故障诊断方法

蒋佳炜;胡以怀;方云虎;张陈;芮晓松;汪猛   

  1. 上海海事大学商船学院,上海,201306
  • 出版日期:2022-05-25 发布日期:2022-06-09
  • 通讯作者: 胡以怀(通信作者),男,1964年生,教授、博士研究生导师。研究方向为船舶动力装置振动分析、故障诊断和系统仿真。E-mail:yhhu@shmtu.edu.cn。
  • 作者简介:蒋佳炜,男,1992年生,博士研究生。研究方向为智能故障诊断。
  • 基金资助:
    上海船舶智能运维与能效监控工程技术研究中心资助项目(20DZ2252300)

Fault Diagnosis Method of Marine Fans Based on MTAD  and Fuzzy Entropy

JIANG Jiawei;HU Yihuai;FANG Yunhu;ZHANG Chen;RUI Xiaosong;WANG Meng   

  1. Merchant Marine College,Shanghai Maritime University,Shanghai,201306
  • Online:2022-05-25 Published:2022-06-09

摘要: 船舶旋转机械往往在多振源的环境中运转,如何对其振动信号进行有效的特征提取和降噪处理是研究热点。时域同步平均方法对振动信号的噪声抑制有较好的效果,但是该方法需要的键相信号难以获取,特定频率以外的故障信息会丢失且倍频信号波形会互相混叠,以上问题限制了该方法的适用性。提出了一种多尺度时域平均分解法,有效地克服了传统时域平均法存在的问题,并结合模糊熵特征选择对船舶风机进行了故障诊断,准确率与计算速度均优于EMD、EEMD和VMD方法。仿真数据分析与故障模拟试验证明了该方法的有效性。

关键词: 多尺度时域平均分解, 模糊熵, 船舶旋转机械, 故障诊断, 特征提取, 特征选择

Abstract: Ship rotating machinery often operated in a multi-vibration source environment. How to effectively extract features and reduce noise processing of the vibration signals was a hot topic for scholars. The time-domain synchronous averaging method had good effect iveness on the noise suppression of vibration signals. However, the key phase signals required by this method were difficult to obtain, and fault information other than the specific frequency would be lost, and the waveforms of the frequency multiplication signal would be mixed with each other. The above problems limited the applicability of this method. A MTAD method was proposed to overcome the problems of the traditional time-domain averaging method effectively, and combined fuzzy entropy feature selection to perform fault diagnosis on ship wind turbines. The accuracy and calculation speed are better than that of EMD, EEMD and VMD method. The effectiveness of the proposed method is demonstrated through simulation data analysis and fault simulation experiments. 

Key words: multiscale time-domain averaging decomposition(MTAD), fuzzy entropy, ship rotating machinery, fault diagnosis, feature extraction, feature selection

中图分类号: