[1]李杰,谢福贵,刘辛军,等. 五轴数控机床空间定位精度改善方法研究现状[J].机械工程学报, 2017,53(7):113-128.
LI Jie, XIE Fugui, LIU Xinjun, et al. Analysis on the Research Status of Volumetric Positioning Accuracy Improvement Methods for Five-axis NC Machine Tools[J]. Journal of Mechanical Engineering, 2017,53(7):113-128.
[2]XING K, ACHICHE S, MAYER J. Five-axis Machine Tools Accuracy Condition Monitoring Based on Volumetric Errors and Vector Similarity Mea-sures[J]. International Journal of Machine Tools and Manufacture, 2019,138:80-93.
[3]ANTONIADIS A, LAMBERT-LACROIX S, POGGI J M . Random Forests for Global Sensitivity Analysis:a Selective Review[J]. Reliability Engineering and System Safety, 2021, 206:107312.
[4]付国强,饶勇建,谢云鹏,等. 几何误差贡献值影响下五轴数控机床运动轴误差灵敏度分析方法[J]. 中国机械工程, 2020,31(13):1518-1528.
FU Guoqiang, RAO Jianyong, XIE Yunpeng, et al. Error Sensitivity Analysis of Motion Axis for Five-axis CNC Machine Tools with Geometric Error Contribution[J]. China Mechanical Engineering, 2020,31(13):1518-1528.
[5]谢福贵,刘辛军,陈禹臻. 一种新型虚拟中心并联机构的误差灵敏度分析[J]. 机械工程学报, 2013,49(17):85-91.
XIE Fugui, LIU Xinjun, CHEN Yuzhen. Error Sensitivity Analysis of Novel Virtual Center Mechanism with Parallel Kinematics[J]. Journal of Mechanical Engineering, 2013,49(17):85-91.
[6]CHEN Guoda, LIANG Yingchun, SUN Yazhou, et al. Volumetric Error Modeling and Sensitivity Analysis for Designing a Five-axis Ultra-precision Machine Tool[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68:2525-2534.
[7]WU Changjun, FAN Jinwei, WANG Qiaohua, et al. Machining Accuracy Improvement of Non-orthogonal Five-axis Machine Tools by a New Iterative Compensation Methodology Based on the Relative Motion Constraint Equation[J]. International Journal of Machine Tools and Manufacture, 2018, 124:80-98.
[8]LIU Yutao, FEI Ding, LI Duo, et al. Machining Accuracy Improvement for a Dual-spindle Ultra-precision Drum Roll Lathe Based on Geometric Error Analysis and Calibration[J]. Precision Engineering, 2020, 66:401-416.
[9]CHENG Qiang, FENG Qiunan, LIU Zhifeng, et al. Sensitivity Analysis of Machining Accuracy of Multi-axis Machine Tool Based on POE Screw Theory and Morris Method[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84:2301-2318.
[10]LI Jie, XIE Fugui, LIU Xinjun, et al. Geometric Error Modeling and Sensitivity Analysis of a Five-axis Machine Tool[J]. The International Journal of Advanced Manufacturing Technology, 2016, 82:2037-2051.
[11]LI Qingzhao, WANG Wei, JIANG Yunfeng, et al. A Sensitivity Method to Analyze the Volumetric Error of Five-axis Machine Tool[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98:1791-1805.
[12]刘奕颖,郭俊康,李宝童,等. 精密机床加工误差灵敏度分析与公差设计[J]. 机械工程学报, 2019, 55(17):145-152.
LIU Yiying, GUO Junkang, LI Baotong, et al. Sensitivity Analysis and Tolerance Design for Precision Machine Tool[J]. Journal of Mechanical Engineering, 2019, 55(17):145-152.
[13]GUO Shijie, JIANG Gedong, MEI Xusong. Investigation of Sensitivity Analysis and Compensation Parameter Optimization of Geometric Error for Five-axis Machine Tool[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93:3229-3243.
[14]FU Guoqiang, GONG Hongwei, FU Jianzhou, et al. Geometric Error Contribution Modeling and Sensitivity Evaluating for Each Axis of Five-axis Machine Tools Based on POE Theory and Transforming Differential Changes between Coordinate Frames[J]. International Journal of Machine Tools and Manufacture, 2019, 147:103455.
[15]ZHANG X, ZHANG Y, PANDEY M D. Global Sensitivity Analysis of a CNC Machine Tool:Application of MDRM[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81:159-169.
[16]杨赟,朱梦瑞,李慧敏等. 基于灵敏度分析的立式加工中心批量空间误差建模和补偿[J]. 机械工程学报, 2020,56(7):204-212.
YANG Yun, ZHU Mengrui, LI Huimin, et al. Volumetric Error Modelling and Compensation for Batch of Vertical Machining Centers Based on Sensitivity Analysis[J]. Journal of Mechanical Engineering, 2020,56(7):204-212.
[17]LI Z, SATO R, SHIRASE K, et al. Sensitivity Analysis of Relationship between Error Motions and Machined Shape Errors in Five-axis Machining Center:Peripheral Milling Using Square-end Mill as Test Case[J]. Precision Engineering, 2019, 60:28-41.
[18]XIA Changjiu, WANG Shilong, MA Chi, et al. Crucial Geometric Error Compensation towards Gear Grinding Accuracy Enhancement Based on Simplified Actual Inverse Kinematic Model[J]. International Journal of Mechanical Sciences, 2020, 169:105319.
[19]YAO Honghui, LI Zengqiang, ZHAO Xuesen, et al. Modeling of Kinematics Errors and Alignment Method of a Swing Arm Ultra-precision Diamond Turning Machine[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87:165-176.
[20]International Standards Organization(ISO). BS ISO 230-7—2006:Test Code for Machine Tools, Part 7:Geometric Accuracy of Axes of Rotation[S].London:BSI, 2007.
[21]FAN Jinwei, TAO Haohao, PAN Ri, et al. An Approach for Accuracy Enhancement of Five-axis Machine Tools Based on Quantitative Interval Sensitivity Analysis[J]. Mechanism and Machine Theory, 2020, 148:103806.
[22]XIANG S, ALTINTAS Y. Modeling and Compensation of Volumetric Errors for Five-axis Machine Tools[J]. International Journal of Machine Tools & Manufacture, 2016, 101:65-78.
|