中国机械工程 ›› 2022, Vol. 33 ›› Issue (14): 1691-1696,1706.DOI: 10.3969/j.issn.1004-132X.2022.14.007

• 智能制造 • 上一篇    下一篇

具有压力和位置检测功能的气囊型触觉传感器

王顶;吴德宇;杨达亮;陈立挺;叶锦华;吴海彬   

  1. 福州大学机械工程及自动化学院,福州,350116
  • 出版日期:2022-07-25 发布日期:2022-08-02
  • 通讯作者: 吴海彬(通信作者),男,1973年生,教授、博士生导师。主要研究方向为触觉感知、机器人技术。发表论文40余篇。E-mail: wuhb@fzu.edu.cn。
  • 作者简介:王顶,男,1996 年生,硕士研究生。研究方向为机器人触觉感知。E-mail:1771203624@qq.com。
  • 基金资助:
    国家重点研发计划(2018YFB1308603)

Air-bag Tactile Sensor with Pressure and Position Detection Functions

WANG Ding;WU Deyu;YANG Daliang;CHEN Liting;YE Jinhua;WU Haibin   

  1. School of Mechanical Engineering and Automation,Fuzhou University,Fuzhou,350116
  • Online:2022-07-25 Published:2022-08-02

摘要: 为了提高机器人与外界环境的安全交互性能,基于导电面电势分布理论和封闭气体压缩定律提出一种适用于机器人曲表面的触觉传感器模型,实现了接触位置与接触压力的检测。传感器采用三层结构,包括导电层、压缩气体隔离层和信号提取层。为了适应任意曲面形状,降低导电层电势非线性分布影响,采用机器学习算法对电势分布模型进行重建。采用COMSOL软件对传感器导电层进行物理建模与仿真,并制备了传感器样品。仿真和实验结果表明,提出的触觉传感器模型可以定制于机器人曲表面上,并能实现接触位置和接触压力的实时检测,可用于人机信息交互。

关键词: 触觉传感器, 接触位置检测, 接触压力检测, 机器学习

Abstract: In order to improve the safe interaction between the robot and the external environment, a tactile sensor model for the curved surface of the robot was proposed based on the theory of electric potential distribution on the conductive surface and the closed gas compression law. The sensor might detect contact positions and contact pressures. Three-layer structure was adopted, including conductive layer, compressed gas isolation layer and signal extraction layer. In order to adapt to arbitrary surface shapes and reduce the influences of nonlinear electric potential distribution of conductive layer, a machine learning algorithm was used to reconstruct the electric potential distribution model. The conductive layer of the sensor was modeled and simulated by COMSOL software, and the sensor sample was prepared. Simulation and experimental results show that the proposed tactile sensor may be customized to the curved surfaces of the robot, and may realize the real-time detection of contact positions and contact pressures, which may be used for human-machine information interaction.

Key words: tactile sensor, contact position detection, contact pressure detection, machine learning

中图分类号: