中国机械工程 ›› 2022, Vol. 33 ›› Issue (15): 1869-1875,1889.DOI: 10.3969/j.issn.1004-132X.2022.15.013
马东福;宋笔锋;薛栋;宣建林
出版日期:
2022-08-10
发布日期:
2022-09-01
通讯作者:
宣建林(通信作者),男,1981年生,副教授。研究方向为微小型飞行器设计。E-mail:xuan@nwpu.edu.cn。
作者简介:
马东福,男,1994年生,博士研究生。研究方向为微小型仿生飞行器设计、机械设计。E-mail:mdfnpu@mail.nwpu.edu.cn。
基金资助:
MA Dongfu;SONG Bifeng;XUE Dong;XUAN Jianlin
Online:
2022-08-10
Published:
2022-09-01
摘要: 针对扑翼飞行器自主起降能力缺失、严重影响其适用场景的问题,开展了仿生弹跳机构设计研究。对鸟类跳跃起飞过程中典型的运动状态进行分析,结合其各阶段的后肢骨骼结构、重心、力、速度等运动变化规律,对扑翼飞行器弹跳起飞动态过程进行了设计。基于鸟腿的骨骼解剖学结构,设计了闭链齿轮-五杆仿鸟腿弹跳机构,并基于D-H法推导出弹跳机构运动学方程,利用拉格朗日方程建立了弹跳机构起跳阶段的动力学方程。对弹跳机构进行了详细结构设计,采用ADAMS对简化的弹跳模型进行了仿真分析。仿真结果显示,借助该仿生弹跳机构,扑翼飞行器系统质心速度达到8.4 m/s,大于“信鸽”飞行器起飞所需的速度7.9 m/s,具备弹跳起飞的可能性。
中图分类号:
马东福, 宋笔锋, 薛栋, 宣建林. 受生物启发的扑翼飞行器弹跳机构概念设计[J]. 中国机械工程, 2022, 33(15): 1869-1875,1889.
MA Dongfu, SONG Bifeng, XUE Dong, XUAN Jianlin. Conceptual Design of Bio-inspired Jumping Mechanisms for Flapping-wing Aerial Vehicles[J]. China Mechanical Engineering, 2022, 33(15): 1869-1875,1889.
[1]HU H, KUMAR A G, ABATE G, et al. An Experimental Investigation on the Aerodynamic Performances of Flexible Membrane Wings in Flapping Flight[J]. Aerospace Science and Technology, 2010, 14(8):575-586. [2]PARANJAPEA A, CHUNG S J, HILTON H H, et al. Dynamics and Performance of Tailless Micro Aerial Vehicle with Flexible Articulated Wings[J]. AIAA Journal, 2012, 50(5):1177-1188. [3]FESTO. SmartBird:BirdFlight Deciphered[EB/OL]. [2021-04-06].https:∥ www. festo. com/group/en/cms/10238. htm. [4]YANG W, WANG L, SONG B. Dove:a Biomimetic Flapping-wing Micro Air Vehicle[J]. International Journal of Micro Air Vehicles, 2018, 10(1):70-84. [5]马东福, 宋笔锋, 宣建林, 等. 仿鸟扑翼飞行器自主起降技术研究进展[J]. 宇航学报, 2021, 42(3):265-273. MA Dongfu, SONG Bifeng, XUAN Jianlin, et al. Recent Progress in Autonomous Take-off and Landing Technology of Bird-like Flapping-wing Aerial Vehicle[J]. Journal of Astronautics, 2021, 42(3):265-273. [6]PETERSON K, FEARING R S. Experimental Dynamics of Wing Assisted Running for a Bipedal Ornithopter[C]∥ 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, 2011:5080-5086. [7]KIM J H, PARK C Y, JUN S M, et al. Flight Test Measurement and Assessment of a Flapping Micro Air Vehicle[J]. International Journal of Aeronautical and Space Sciences, 2012, 13(2):238-249. [8]XUE D, SONG B, SONG W, et al. Computational Simulation and Free Flight Validation of Body Vibration of Flapping-wing MAV in Forward Flight[J]. Aerospace Science and Technology, 2019, 95:105491. [9]薛栋, 宋笔锋, 杨文青, 等. 应用在扑翼飞行器的仿生起落架系统及起落控制方法:CN105416575A[P]. 2016-03-23. XUE Dong, SONG Bifeng, YANG Wenqing, et al. Bionic Undercarriage System for Flapping Wing Air Vehicle and Takeoff and Landing Control Method:CN105416575A[P]. 2016-03-23. [10]ZHANG T. Design, Analysis and Validation of a Silver Gull Inspired Hybrid UAV[D]. Sydney:University of Technology Sydney, 2019. [11]EARLS K D. Kinematics and Mechanics of Ground Take-off in the Starling Sturnis Vulgaris and the Quail Coturnix Coturnix[J]. Journal of Experimental Biology, 2000, 203(4):725-739. [12]ZHANG Z Q, ZHAO J, CHEN H L, et al. A Survey of Bioinspired Jumping Robot:Takeoff, Air Posture Adjustment, and Landing Buffer[J]. Applied Bionics and Biomechanics, 2017, 2017:4780160. [13]莫小娟, 葛文杰, 赵东来, 等. 微小型跳跃机器人研究现状综述[J]. 机械工程学报, 2019, 55(15):109-123. MO Xiaojuan, GE Wenjie, ZHAO Donglai, et al. Re-view:Research Status of Miniature Jumping Robot[J]. Journal of Mechanical Engineering, 2019, 55(15):109-123. [14]HUDSON O A, FANNI M, AHMED S M, et al. Autonomous Flight Take-off in Flapping Wing Aerial Vehicles[J]. Journal of Intelligent & Robotic Systems, 2020, 98:135-152. [15]熊康太. 自主起降扑翼机器人关键技术研究[D]. 赣州:江西理工大学, 2018. XIONG Kangtai. Research on Key Technology of Self-taking Off and Landing Flapping Aero Craft[D]. Ganzhou:Jiangxi University of Science and Technology, 2018. [16]SIVALINGAM G. Design of Jumping Legs for Flap Wing Vehicles[D]. Manchester:The University of Manchester, 2017. [17]ZHANG J, DONG C, SONG A. Jumping Aided Takeoff:Conceptual Design of a Bio-inspired Jumping-flapping Multi-modal Locomotion Robot[C]∥2017 IEEE International Conference on Robotics and Biomimetics. Macau, 2017:32-37. [18]EARLS K D. Kinematics and Mechanics of Ground Take-off in the Starling Sturnis Vulgaris and the Quail Coturnix Coturnix[J]. Journal of Experimental Biology, 2000, 203(4):725-739. [19]魏敦文. 基于弹性驱动的跳跃机器人研究[D]. 西安:西北工业大学, 2016. WEI Dunwen. Research of Jumping Robots Based on Compliant Actuators[D]. Xian:Northwestern Polytechnical University, 2016. [20]战强. 机器人学:机构、运动学、动力学及运动规划[M]. 北京:清华大学出版社, 2019. ZHAN Qiang. Robotics:Mechanisms, Kinematics, Dynamics and Motion Planning[M]. Beijing:Tsinghua University Press, 2019. [21]年鹏. 仿鸟类扑翼飞行器设计与性能提升方法研究[D]. 西安:西北工业大学, 2021. NIAN Peng. Research on the Bird-like Flapping-wing Micro Air Vehicle Design and Its Performance Improvement Methods[D]. Xian:Northwestern Polytechnical University, 2021. [22]林晓龙. 一种用于火星探弹跳机器人的研究[D]. 哈尔滨:哈尔滨工业大学, 2018. LIN Xiaolong. Research on a Bouncing Robot for Mars Exploration[D]. Harbin:Harbin Institute of Technology, 2018. |
[1] | 杨峰, 罗世杰, 杨江鸿, 王英俊, . 基于GPU加速的等几何拓扑优化高效多重网格求解方法[J]. 中国机械工程, 2024, 35(04): 602-613. |
[2] | 张萌, 张松林, 刘玉为, 刘时成, 范鹏举. 可调谐半导体激光器压电驱动系统的优化设计[J]. 中国机械工程, 2024, 35(04): 656-665. |
[3] | 李荣启, 闫涛, 何智成, 米栋, 姜潮, 郑静. 流-热-力耦合的高性能结构拓扑优化设计方法[J]. 中国机械工程, 2024, 35(03): 487-497. |
[4] | 高进, 崔海冰, 樊涛, 李昂, 杜尊峰. 一种基于自适应Kriging集成模型的结构可靠性分析方法[J]. 中国机械工程, 2024, 35(01): 83-92. |
[5] | 程贤福, 章志宏, 王承辉, 潘逸飞. 产品架构演化及开放式设计策略[J]. 中国机械工程, 2024, 35(01): 109-124. |
[6] | 朱宗铭, 季苏强, 王浩, 唐蒲华, 梁亮. 基于流固耦合的介入机器人诊疗时血流动力学分析[J]. 中国机械工程, 2023, 34(21): 2592-2599. |
[7] | 屈小章, 张加贝, 翟方志. 高速列车散热离心风机性能灵敏性分析及优化[J]. 中国机械工程, 2023, 34(20): 2504-2512. |
[8] | 肖罡, 张斌, 李时春, 严惠军, 杨钦文. 基于流体压降控制的感应加热甲醇重整装置设计及其服役性能优化[J]. 中国机械工程, 2023, 34(17): 2048-2057,2076. |
[9] | 屈小章, 张加贝, 翟方志. 非随机载荷不确定的机车侧墙过滤系统两相流可靠性分析[J]. 中国机械工程, 2023, 34(15): 1881-1889. |
[10] | 耿雪晴, 吴孟武, 华林, . 轮腿式可变形车轮设计及整车控制研究[J]. 中国机械工程, 2023, 34(12): 1446-1452. |
[11] | 闫萌, 李涛, 杨晨, 王明宇, 杨东东. 面向机电产品绿色设计与评价协同的生命周期评价参数计算方法[J]. 中国机械工程, 2023, 34(12): 1453-1464. |
[12] | 陶亮, 张大山, 张小龙, 潘登, 占庆良. 智能轮胎开发平台专用轮辋总成设计与试验[J]. 中国机械工程, 2023, 34(09): 1111-1119. |
[13] | 刘基盛, 计良, 李威, 贾志新, 成金鑫, 方鹏程. 基于多代理模型的离心叶轮高效优化设计方法[J]. 中国机械工程, 2023, 34(08): 899-907. |
[14] | 王新愿, 周金宇, 谢里阳, 程锦翔. 结构可靠度求解的自适应细分重要抽样法[J]. 中国机械工程, 2023, 34(03): 300-306,313. |
[15] | 何宇凡, 孙江宏, 高锋, 李乃峥, 何雪萍, 王军见. 一种针对圆锥体外表面贴装的机械手设计分析与优化[J]. 中国机械工程, 2023, 34(01): 55-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||