中国机械工程 ›› 2022, Vol. 33 ›› Issue (18): 2190-2196.DOI: 10.3969/j.issn.1004-132X.2022.18.005

• 机械基础工程 • 上一篇    下一篇

弱刚性构件磁流变抛光变形机理与抑制技术研究

潘博1;康仁科1;贺增旭1;李凯隆2;张云飞2;黄文2;郭江1   

  1. 1.大连理工大学精密与特种加教育部重点实验室,大连,116024
    2.中国工程物理研究院机械制造工艺研究所,绵阳,621900
  • 出版日期:2022-09-25 发布日期:2022-10-05
  • 通讯作者: 郭江(通信作者),男,1982年生,教授、博士研究生导师。研究方向为精密/超精密加工,智能制造等。E-mail:guojiang@dlut.edu.cn。
  • 作者简介:潘博,男,1993年生,博士研究生。研究方向为双面研磨和磁流变修形工艺。Email:panbo723@mail.dlut.edu.cn。
  • 基金资助:
    国家重点研发计划(2018YFA0702900);国家自然科学基金(51975096)

Investigation of Deformation Mechanism and Suppression Method of Weak Stiffness Components by Magnetorheological Finishing

PAN Bo1;KANG Renke1;HE Zengxu1;LI Kailong2;ZHANG Yunfei2;HUANG Wen2;GUO Jiang1   

  1. 1.Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of
    Education,Dalian University of Technology,Dalian,Liaoning,116024
    2.Institute of Mechanical Manufacturing Technology,China Academy of Engineering Physics,
    Mianyang,Sichuan,621900
  • Online:2022-09-25 Published:2022-10-05

摘要: 弱刚性平面构件对应力极其敏感,加工后平面度难以保证,为解决该问题,提出通过磁流变抛光工艺改善工件的平面度。通过有限元仿真,阐明弱刚性构件磁流变抛光变形的机理,提出残余应力的不对称释放是造成工件变形的主要原因,并建立加工过程中工件变形预测模型。仿真结果表明,采用单面加工时,变形为9.5 μm;采用翻面加工时,变形为0.7 μm。根据仿真中工件变形的情况,提出了翻面加工的策略,并通过实验进行验证。实验结果表明,单面加工时,工件变形严重,而采用翻面加工时,变形会产生回复现象,从而使得工件平面度得到有效收敛。进而,提出了弱刚性构件磁流变修形抑制技术,即通过翻面等量材料去除实现工件表面残余应力的对称释放,并在200 mm、厚2 mm的纯铜弱刚性平面构件上应用该技术,两个面的平面度PV值分别从4.6 μm和5.9 μm降低到2.0 μm。

关键词: 弱刚性平面构件, 磁流变抛光, 残余应力, 平面度

Abstract:  Weak stiffness components were sensitive to the stress, and it was hard to guarantee the flatness after machining. To solve this problem, A MRF process was proposed to improve the flatness. The deformation mechanism of the components was clarified, and the residual stress relaxation was considered as the main cause of the deformations, which was predicted by an established model. The simulation results show that the deformations are about 9.5 μm by single-side machining, while the deformations are about 0.7 μm by turning over machining. Thus, the machining strategy by turning over was proposed based on the simulation deformation results. Experiments were conducted to verify the simulation. The results reveal that serious deformations happen by single-side machining, while the deformations recover by turning over machining, and the flatness converged efficiently. By the turning over machining strategy, the flatness peak and valley(PV)  value reduce from 4.6 μm and 5.9 μm to 2.0 μm respectively on a 200×2 mm weak stiffness flat component of copper. 

Key words: weak stiffness component, magnetorheological finishing(MRF), residual stress, flatness

中图分类号: