[1]王志坚,王俊元,赵志芳,等.基于MKurt-MOMEDA的齿轮箱复合故障特征提取[J]. 振动.测试与诊断, 2017, 37 (4):830-834.
WANG Zhijian, WANG Junyuan, ZHAO Zhifang, et al. Composite Fault Feature Extraction of Gear Box Based on MKurt-MOMEDA[J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37(4):830-834.
[2]HE Shuilong, CHEN Jinglong, ZHOU Zitong, et al. Multifractal Entropy Based Adaptive Multiwavelet Construction and Its Application for Mechanical Compound-fault Diagnosis[J]. Mechanical Systems & Signal Processing, 2016, 76/77:742-758.
[3]TENG Wei, DING Xian, CHENG Hao, et al. Compound Faults Diagnosis and Analysis for a Wind Turbine Gearbox via a Novel Vibration Model and Empirical Wavelet Transform[J]. Renewable Energy, 2019, 136:393-402.
[4]KIM J, LEE S. Identification of Tooth Fault in a Gearbox Based on Cyclostationarity and Empirical Mode Decomposition[J]. Structural Health Monitoring,2018, 17(3):494-513.
[5]李蓉,于德介,陈向民,等.基于线调频小波路径追踪算法与EEMD的齿轮箱复合故障诊断方法[J]. 振动与冲击, 2014, 33(3):51-56.
LI Rong, YU Dejie, CHEN Xiangmin, et al. A Compound Fault Diagnosis Method for Gearboxs Based on Chirplet Path Pursuit and EEMD[J]. Journal of Vibration and Shock, 2014, 33(3):51-56.
[6]WEI Yu, XU Minqiang, LI Yongbo, et al. Gearbox Fault Diagnosis Based on Local Mean Decomposition, Permutetion Entropy and Extreme Learning Machine[J]. Journal of Vibroengineering, 2016, 18(3):1459-1473.
[7]WIGGINS R. Minimum Entropy Deconvolution[J]. Geophysical Prospecting for Petrole, 1980, 16(1):21-35.
[8]冷军发,荆双喜,禹建功.基于最小熵解卷积的齿轮箱早期故障诊断[J].机械科学与技术,2015,34(3):445-448.
LENG Junfa, JING Shuangxi, YU Jiangong. Incipient Fault Diagnosis of the Gearbox Based on the Minimum Entropy Deconvolution[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(3):445 -448.
[9]祝小彦,王永杰.基于MOMEDA与Teager能量算子的滚动轴承故障诊断[J].振动与冲击,2018,37(6):104-110.
ZHU Xiaoyan, WANG Yongjie. Fault Diagnosis of Rolling Bearings Based on the MOMEDA and Teager Energy Operator[J]. Journal of Vibration and Shock, 2018, 37(6):104-110.
[10]MCDONALD G, ZHAO Qing, ZUO M. Maximum Correlated Kurtosis Deconvolution and Application on Gear Tooth Chip Fault Detection[J]. Mechanical Systems & Signal Processing, 2012, 33(1):237-255.
[11]TANG Guiji, WANG Xiaolong, HE Yuling. Diagnosis of Compound Faults of Rolling Bearings through Adaptive Maximum Correlated Kurtosis Deconvolution[J]. Journal of Mechanical Science & Technology, 2016, 30(1):43-54.
[12]MIAO Yonghao, ZHAO Ming, LIN Jing, et al. Application of an Improved Maximum Correlated Kurtosis Deconvolution Method for Fault Diagnosis of Rolling Element Bearings[J]. Mechanical Systems and Signal Processing, 2017, 92:173-195.
[13]BUZZONI M, ANTONI J, DELIA G. Blind Deconvolution Based on Cyclostationarity Maximization and Its Application to Fault Identification[J]. Journal of Sound and Vibration, 2018, 432:569-601.
[14]黎敏,阳建宏,王晓景.基于信息熵的循环谱分析方法及其在滚动轴承故障诊断中的应用[J].振动工程学报,2015,28(1):164-174.
LI Min,YANG Jianhong,WANG Xiaojing. The Cyclic Spectrum Density Method Based on Entropy and Its Application to the Fault Diagnosis of Rolling Bearings[J]. Journal of Vibration Engineering, 2015, 28(1):164-174.
[15]OTOOLE J, TEMKO A, STEVENSON N. Assessing Instantaneous Energy in the EEG:a Non-negative, Frequency-weighted Energy Operator[C]∥36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,EMBC. Chicago, 2014:3288-3291.
[16]蒋章雷,徐小力.旋转机械运行稳定性劣化的1.5维谱特征提取方法[J].中国机械工程,2015,26(23):3208-3213.
JIANG Zhanglei, XU Xiaoli. Feature Extraction Method of 1.5-Dimensional Faced to Running Stability Deterioration of Rotating Machinery[J]. China Mechanical Engineering, 2015, 26(23):3208-3213.
[17]HIEU L, CHENG J, YANG Yu, et al. Gear Fault Diagnosis Method Based on Local Characteristic Scale Decomposition Multi-scale Permutation Entropy and Radial Basis Function Network[J]. Journal of Computational and Theoretical Nanoscience, 2017, 14(10):5054-5063.
|