[1]WANG Huaming, LYU Jun, CHEN Lin, et al. Numerical Study on Hydrodynamics of Ships in Oblique Motion with Multi-degree of Freedom[J]. Journal of Ship Mechanics, 2016, 20(9):1083-1097.
[2]陈建平,周儒荣,韦忠瑄. 用结构有限元程序进行液体晃动动力分析[J]. 中国机械工程,2003, 14(19):17-19.
CHEN Jianping, ZHOU Rurong, WEI Zhongxuan. Dynamic Analysis of Liquid Sloshing with Structural Finite Element Program[J]. China Mechanical Engineering, 2003, 14(19):17-19.
[3]WAN Decheng, ZHUANG Yuan. Numerical Study on Coupling Effects of FPSO Ship Motionand LNG Tank Sloshing in Low-filling Conditions[J]. Engineering, 2016:197427262.
[4]WANG W, TANG G, SONG X, et al. Transient Sloshing in Partially Filled Laterally Excited Horizontal Elliptical Vessels with T-shaped Baffles[J]. Journal of Pressure Vessel Technology, 2017, 139(2):1-13.
[5]卫志军, 翟钢军, 吴锤结. 气液耦合系统中固有频率的实验研究[J]. 应用数学和力学, 2021, 42(2):133-141.
WEI Zhijun, ZHAI Gangjun, WU Chuijie. Experimental Investigation of Natural Frequencies of Gas-liquid Coupled Systems in Tanks[J]. Applied Mathematics and Mechanics, 2021, 42(2):133-141.
[6]罗鑫, 董胜. 组合隔板抑制液舱晃荡机理的数值方法研究[J]. 中国海洋大学学报(自然科学版), 2020, 50(10):107-117.
LUO Xin, DONG Sheng. Numerical Investigation on the Mechanism of Combined Anti-slosh Baffles[J]. Periodical of Ocean University of China, 2020, 50(10):107-117.
[7]FALTINSEN O M, ROGNEBAKKE O F, TIMOKHA A N. Resonance Three-dimensional Nonlinear Sloshing in a Square-base Basin[J]. Journal of Fluid Mechanics, 2003, 487:1-42.
[8]FALTINSEN O M, ROGNEBAKKE O F, TIMOKHA A N. Transient and Steady-state Amplitudes of Resonant Three Dimensional Sloshing in a Square Base Tank with a Finite Fluid Depth[J]. Physics of Fluids, 2006, 18(1):1-14.
[9]张海涛, 孙蓓蓓. 匀加速激励下的液体晃动力解析计算[J]. 振动与冲击, 2020, 39(12):163-168.
ZHANG Haitao, SUN Beibei. Analytical Calculation of Liquid Sloshing Force under Uniform Acceleration Excitation[J]. Journal of Vibration and Shock, 2020, 39(12):163-168.
[10]岳宝增, 祝乐梅, 于丹. 储液罐动力学与控制研究进展[J]. 力学进展, 2011, 41(1):79-92.
YUE Baozeng, ZHU Lemei, YU Dan. Research Progress on Dynamics and Control of Liquid Storage Tank[J]. Advances in Mechanics, 2011, 41(1):79-92.
[11]卫志军, 岳前进, 阮诗伦,等. 矩形液舱晃荡冲击载荷的试验机理研究[J]. 船舶力学, 2012, 16(8):885-892.
WEI Zhijun, YUE Qianjin, RUAN Shilun, et al. Experimental Mechanism of Sloshing Impact Load on Rectangular Tanks[J]. Journal of Ship Mechanics, 2012, 16 (8):885-892.
[12]卫志军, 申利敏, 王梓名, 等. 液体晃荡自由液面波高的相似关系的实验研究[J]. 船舶力学, 2020, 24(3):282-293.
WEI Zhijun, SHEN Limin, WANG Ziming, et al. Experimental Study on the Similarity Relation of Wave Height of Liquid Sloshing Free Surface[J]. Journal of Ship Mechanics, 2020, 24(3):282-293.
[13]陈晓东, 卫志军, 岳前进, 等. 面向储舱结构设计的晃荡冲击荷载实验研究[J]. 振动与冲击, 2015, 34(18):171-176.
CHEN Xiaodong, WEI Zhijun, YUE Qianjin, et al. Experimental Study on Sloshing Impact Load for Tank Structure Design[J]. Journal of Vibration and Shock, 2015, 34(18):171-176.
[14]MALENICA S, DIEBOLD L, SUN H K, et al. Sloshing Assessment of the LNG Floating Units with Membrane Type Containment System Where We Are?[J]. Marine Structures, 2017, 56:99-116.
[15]LYU W, MOCTAR O E, POTTHOFF R, et al. Experimental and Numerical Investigation of Sloshing Using Different Free Surface Capturing Methods[J]. Applied Ocean Research, 2017, 68:307-324.
[16]XUE M A, LIN P. Numerical Study of Ring Baffle Effects on Reducing Violent Liquid Sloshing[J]. Computers & Fluids, 2011, 52:116-129.
[17]孙龙刚, 郭鹏程, 罗兴锜. 基于不同涡识别准则的水轮机尾水管涡带形态识别研究[J]. 水动力学研究与进展(A辑), 2019, 34(6):91-99.
SUN Longgang, GUO Pengcheng, LUO Xingqi. Research on Vortex Band Shape Recognition of Turbine Draft Tube Based on Different Vortex Recognition Criteria[J]. Research and Development of Hydrodynamics (Part A), 2019, 34(6):91-99.
[18]XUE M A, LIN P. Numerical Study of Ring Baffle Effects on Reducing Violent Liquid Sloshing[J]. Computers & Fluids, 2011, 52:116-129.
[19]杨志勋, 徐潜岳, 杨钰城, 等. 基于HHT变换的晃荡实验冲击荷载特性分析研究[J]. 船舶力学, 2020, 24(11):21-29.
YANG Zhixun, XU Qianyue, YANG Yucheng, et al. Analysis of Impact Load Characteristics of Sloshing Test Based on HHT Transformation[J]. Journal of Ship Mechanics, 2020, 24(11):21-29.
[20]ABRAMSON H N. The Dynamic Behavior of Liquids in Moving Containers with Applications to Space Vehicle Technology:NASA-SP-106[R]. Washington D C:NASA, 1966.
[21]GOUDARZI M A, SABBAGH-YAZDI S R. Analytical and Experimental Evaluation on the Effectiveness of Upper Mounted Baffles with Respect to Commonly Used Baffles[J]. Ocean Engineering, 2012, 42:205-217.
[22]POGULURI S K, CHO I H. Mitigation of Liquid Sloshing in a Rectangular Tank due to Slotted Porous Screen[J]. Proceedings of the Institution of Mechanical Engineers Part M, Journal of Engineering for the Maritime Environment, 2020, 234(3):686-698.
[23]YU L, XUE M A, ZHENG J. Experimental Study of Vertical Slat Screens Effects on Reducing Shallow Water Sloshing in a Tank under Horizontal Excitation with a Wide Frequency Range[J]. Ocean Engineering, 2019, 173:131-141.
[24]李琼. 含孔矩形薄板弹性屈曲模型的构建及研究[D]. 哈尔滨:哈尔滨工程大学, 2019.
LI Qiong. Construction and Research on Elastic Buckling Model of Rectangular Thin Plate with Holes[D]. Harbin:Harbin Engineering University, 2019.
[25]薛米安, 陈奕超, 苑晓丽, 等. 低载液率液体晃荡冲击压力的试验研究[J]. 振动与冲击, 2019, 38(14):239-245.
XUE Mi’an, CHEN Yichao, YUAN Xiaoli, et al. Experimental Study on Impact Pressure of Liquid Sloshing with Low Liquid Loading Rate[J]. Journal of Vibration and Shock, 2019, 38(14):239-245.
|