[1]刘长良, 武英杰, 甄成刚. 基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J]. 中国电机工程学报, 2015, 35(13):3358-3365.
LIU Changliang, WU Yingjie, ZHEN Chenggang. Rolling Bearing Fault Diagnosis Based on Variational Mode Decomposition and Fuzzy C Means Clustering[J]. Proceedings of the CSEE, 2015, 35(13):3358-3365.
[2]罗仁泽, 曹鹏, 代云中, 等. 旋转机械故障诊断理论与实现[J]. 仪表技术与传感器, 2014(3):107-110.
LUO Renze, CAO Peng, DAI Yunzhong, et al. Rotating Machinery Fault Diagnosis Theory and Implementation[J]. Instrument Technique and Sensor, 2014(3):107-110.
[3]REZAEIANJOUYBARI B, YI S. Deep Learning for Prognostics and Health Management:State of the Art, Challenges, and Opportunities[J]. Measurement, 2020, 163:107929.
[4]余浩帅, 汤宝平, 张楷, 等. 小样本下混合自注意力原型网络的风电齿轮箱故障诊断方法[J]. 中国机械工程, 2021, 32(20):2475-2481.
YU Haoshuai, TANG Baoping, ZHANG Kai, et al. Fault Diagnosis Method of Wind Power Gearbox Based on Hybrid Self Attention Prototype Network with Small Samples[J]. China Mechanical Engineering, 2021, 32(20):2475-2481.
[5]任浩, 屈剑锋, 柴毅, 等. 深度学习在故障诊断领域中的研究现状与挑战[J]. 控制与决策, 2017, 32(8):1345-1358.
REN Hao, QU Jianfeng, CHAI Yi, et al. Deep Learning for Fault Diagnosis:the State of the Art and Challenge[J]. Control and Decision, 2017, 32(8):1345-1358.
[6]INCE T, KIRANYAZ S, EREN L, et al. Real-time Motor Fault Detectionby 1D Convolutional Neural Networks[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11):7067-7075.
[7]ZHANG W, LI C H, GAO L,et al. A Deep Convolutional Neural Network with New Training Methods for Bearing Fault Diagnosis under Noisy Environment and Different Working Load[J]. Mechanical Systems and Signal Processing, 2018, 100:439-453.
[8]SHAO H, JIANG H, ZHANG H, et al. Electric Locomotive Bearing Fault Diagnosis Using Novel Convolutional Deep Belief Network[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3):2727-2736.
[9]QI G J, LUO J. Small Data Challengesin Big Data Era:a Survey of Recent Progress on Unsupervised and Semi-Supervised Methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 99:1-1.
[10]陈超, 沈飞, 严如强. 改进LSSVM迁移学习方法的轴承故障诊断[J]. 仪器仪表学报, 2017, 38(1):33-40.
CHEN Chao, SHEN Fei, YAN Ruqiang. Improved ISSVM Migration Learning Method for Bearing Fault Diagnosis[J]. Chinese Journal of Scientific Instrument, 2017, 38(1):33-40.
[11]HAN T, LIU C, YANG W, et al. A Novel Adversarial Learning Framework in Deep Convolutional Neural Network for Intelligent Diagnosis of Mechanical Faults[J]. Knowledge-based Systems, 2019, 165:474-487.
[12]PANG S, YANG X. A Cross-domain Stacked Denoising Autoencoders for Rotating Machinery Fault Diagnosis under Different Working Conditions[J]. IEEE Access, 2019, 7:7277-7292.
[13]ZHENG H L, ANG R X, YANG Y T, et al. Intelligent Fault Identification Based on Multisource Domain Generalization towards Actual Diagnosis Scenario[J]. IEEE Transactions on Industrial Electronics, 2020, 67(2):1293-1304.
[14]徐丹雅. 基于多源域自适应的机械故障诊断方法研究[D]. 济南:山东大学, 2021.
XU Danya. Research on Mechanical Fault Diagnosis Method Based on Multi-source Domain Adaptation[D]. Jinan:Shandong University, 2021.
[15]SHI Y W, DENG A D, DING X, et al. Multisource Domain Factorization Network for Cross-domain Fault Diagnosis of Rotating Machinery:an Unsupervised Multisource Domain Adaptation Method[J]. Mechanical Systems and Signal Processing, 2022, 164:108219.
[16]FENG Y, CHEN J L, HE S L, et al. Globally Localized Multisource Domain Adaptation for Cross-domain Fault Diagnosiswith Category Shift[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32:1-15.
[17]SUN Q, LIU Y Y, CHUA T S, et al. Meta-transfer Learningfor Few-shot Learning[C]∥IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, 2019:403-412.
[18]YE L, KEOGH E.Time Series Shapelets:a New Primitive for Data Mining[C]∥Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, 2009:947-956.
[19]GRABOCKA J, SCHILLING N, WISTUBA M, et al. Learning Time-series Shapelets[C]∥Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Hildesheim, 2014:392-401.[20]WANG Z, YAN W, OATES T. Time Series Classification from Scratch with Deep Neural Networks:a Strong Baseline [C]∥International Joint Conference on Neural Networks. Anchorage, 2017:1578-1585.
[21]PETITJEAN F X, KETTERLIN A, GANARSKI P. A Global Averaging Method for Dynamic Time Warping, with Applications to Clustering[J]. Pattern Recognition, 2010, 44(3):678-693.
[22]GLOROT X, BENGIO Y. Understanding the Difficulty of Training Deep Feedforward Neural Networks[J]. Journal of Machine Learning Research, 2010, 9:249-256.
[23]JASON Y, JEFF C, YOSHUA B, et al. How Transferable Are Featuresin Deep Neural Networks[C]∥Proceedings of the 27th Advances in Neural Information Processing Systems. Cambridge, 2014:3320-3328.
[24]PAN S J, TSANG I W, KWOK J T, et al. Domain Adaptation via Transfer Component Analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2):199-210.
[25]FINN C, ABBEEL P, LEVINE S. Model-agnostic Meta-learning for Fast Adaptation of Deep Networks[C]∥34th International Conference on Machine Learning. Sydney, 2017:1856-1868.
|