中国机械工程 ›› 2022, Vol. 33 ›› Issue (24): 3007-3014.DOI: 10.3969/j.issn.1004-132X.2022.24.012

• 服务型制造 • 上一篇    下一篇

基于支持向量回归积和改进粒子群算法的特定区间盾构机作业参数选取

许哲东1;侯公羽2;杨丽1;黄小军1   

  1. 1.安徽工程大学建筑工程学院,芜湖,241000
    2.中国矿业大学(北京)力学与建筑工程学院,北京,100083
  • 出版日期:2022-12-25 发布日期:2023-01-12
  • 作者简介:许哲东,男,1993年生,博士研究生。研究方向为项目管理、智能算法及其在工程中的应用。E-mail:18310676138 @163.com。
  • 基金资助:
    国家自然科学基金委员会与神华集团有限责任公司联合资助重点项目(U1261212,U1361210);国家自然科学基金(51574247);安徽工程大学引进人才科研启动基金(2021YQQ064);安徽工程大学校级科研项目(Xjky2022168);安徽省高等教育提升计划自然科学研究一般项目(TSKJ2016B24)

Selection of Shield Construction Parameters in Specific Sections Based on e-SVR and Improved Particle Swarm Optimization Algorithm

XU Zhedong1;HOU Gongyu2;YANG Li1;HUANG Xiaojun1   

  1. 1.School of Architecture and Civil Engineering,Anhui Polytechnic University,Wuhu,Anhui,241000
    2.School of Mechanics & Civil Engineering,China University of Mining & Technology(Beijing),Beijing,100083
  • Online:2022-12-25 Published:2023-01-12

摘要: 为实现特定区间盾构机作业参数更准确的选取,提出了基于支持向量回归积(e-SVR)和改进惯性权重降低速度粒子群优化(IIWDSPSO)算法的盾构机作业参数选取模型。基于e-SVR构建掘进参数、地层参数、几何参数与地表沉降值之间的非线性关系模型,并基于实际盾构施工数据与人工神经网络模型、随机森林模型进行性能对比分析;通过10组仿真实验分析惯性权重降低速度对算法性能的影响,基于分析改进的粒子群优化算法优化特定地层参数和几何参数区间的掘进参数。结果表明,e-SVR模型对盾构施工数据样本具有更好的拟合和泛化能力,所提出的IIWDSPSO算法具有更好的准确性、稳定性和收敛概率。实际工程应用结果也验证了所提模型求解出的特定区间掘进参数能使地表沉降值相对更小,得到的掘进参数能够为实际工程提供更准确和可靠的参考。

关键词: 盾构作业参数, 支持向量回归积, 改进惯性权重降低速度粒子群优化算法, 非线性建模

Abstract: To achieve more accurate selection of shield construction parameters in specific sections, a shield construction parameter selection model was proposed based on e-SVR and IIWDSPSO algorithm. Firstly, the nonlinear relationship model among tunneling parameters, formation parameters, geometric parameters and surface settlement was established based on e-SVR, and the performance was compared with ANN(artificial neural network) and RF(random forests) models based on the actual shield construction data. Secondly, the influences of inertia weight decreasing speed on algorithm performance were studied by 10 groups of simulation experiments. The tunneling parameters in specific formation parameters and geometric parameter intervals were optimized based on the improved PSO algorithm. The results show that e-SVR model has better fitting and generalization ability for shield construction data samples, and the proposed IIWDSPSO algorithm has better accuracy, stability and convergence probability. The practical engineering application results also verify that the proposed model may obtain the tunneling parameters in a specific section, which may make the ground settlement value relatively smaller. The obtained tunneling parameters may provide a more accurate and reliable reference for practical engineering.

Key words:  , shield construction parameter, e-support vector regression(e-SVR), improved inertia weight decreasing speed particle swarm optimization(IIWDSPSO) algorithm, nonlinear modeling

中图分类号: