中国机械工程 ›› 2023, Vol. 34 ›› Issue (07): 757-769.DOI: 10.3969/j.issn.1004-132X.2023.07.001
王磊1;邬宇梁1;赵纪元1,3 ;卢秉恒1,2
出版日期:
2023-04-10
发布日期:
2023-05-04
通讯作者:
赵纪元(通信作者),男,1969年生,教授。研究方向为数字化检测技术与增材制造。E-mail:jiyuan.zhao@xjtu.edu.cn。
作者简介:
王磊,男,1982年生,副研究员。研究方向为增材制造与智能制造装备。E-mail:wlei292@xjtu.edu.cn。
基金资助:
WANG Lei1;WU Yuliang1;ZHAO Jiyuan1,3;LU Bingheng1,2
Online:
2023-04-10
Published:
2023-05-04
摘要: 金属增材制造技术在航空航天领域具有复杂内流道的构件成形上具有广阔的应用前景,然而具有复杂内流道的增材制件的精整加工是工业应用的瓶颈问题。分析了内流道机械抛光技术、化学与电化学抛光技术、电解质等离子抛光技术的加工原理、关键技术及国内外研究进展。针对增材制件内流道精整加工需求,分别研究了机械抛光技术、化学与电化学抛光技术、电解质等离子抛光技术的适应性问题及探索方向。针对增材制件内流道精整加工关键技术发展趋势提出了展望:①研究针对功能梯度材料、多金属材料的增材制件内流道精整加工技术;②研究针对具有复杂几何形状、内部复杂分叉、渐变毛细结构、拓扑结构等复杂内流道的复合精整加工技术或组合加工技术;③研究针对内流道精整加工质量的高精度检测方法和几何误差的三维重构技术。
中图分类号:
王磊, 邬宇梁, 赵纪元, , 卢秉恒, . 增材制件内流道精整加工技术研究进展[J]. 中国机械工程, 2023, 34(07): 757-769.
WANG Lei, WU Yuliang, ZHAO Jiyuan, LU Bingheng, . Research Progresses of Finishing Technology for Inner Channel of Additive Manufacturing Parts[J]. China Mechanical Engineering, 2023, 34(07): 757-769.
[1]卢秉恒. 增材制造技术——现状与未来[J]. 中国机械工程, 2020, 31(1):19-23. LU Bingheng. Additive Manufacturing:Current Situation and Future[J]. China Mechanical Engineering, 2020, 31(1):19-23. [2]ZHANG C, WANG S, LI J, et al. Additive Manufacturing of Products with Functional Fluid Channels:a Review[J]. Additive Manufacturing, 2020, 36:101490. [3]高航, 彭灿, 王宣平. 航空增材制造复杂结构件表面光整加工技术研究及进展[J]. 航空制造技术, 2019, 62(9):14-22. GAO Hang, PENG Can, WANG Xuanping. Research Progress on Surface Finishing Technology of Aeronautical Complex Structural Parts Manufactured by Additive Manufacturing[J]. Aeronautical Manufacturing Technology, 2019, 62(9):14-22. [4]雷力明, 侯慧鹏, 何艳丽, 等. 金属增材制造技术在民用航空领域的应用与挑战[J]. 航空制造技术, 2019(21):22-30. LEI Liming, HOU Huipeng, HE Yanli, et al. Application and Challenges of Metal Additive Manufacturing in Civil Aviation[J]. Aeronautical Manufacturing Technology,2019(21):22-30. [5]赵建社, 汪文峰, 吕焱明, 等. 难加工材料闭式整体构件精密电火花加工技术研究[J]. 航空制造技术, 2017(3):22-27. ZHAO Jianshe, WANG Wenfeng, LYU Yanming, et al. Research on Precision EDM Technology for Closed Integral Component of Difficult-to-cut Material[J]. Aeronautical Manufacturing Technology, 2017(3):22-27. [6]武利生, 李元宗. 磨料流加工研究进展[J]. 金刚石与磨料磨具工程, 2005(1):69-74. WU Lisheng, LI Yuanzong. Progress of Abrasive Flow Machining[J]. Diamond & Abrasives Engineering, 2005(1):69-74. [7]詹平海. 磨粒流加工技术的特点及应用[J]. 金属加工:冷加工, 2009(6):30-32. ZHAN Pinghai. Characteristics and Application of Abrasive Flow Machining Technology[J]. Metal Working(Metal Cutting), 2009(6):30-32. [8]WILLIAMS R E, MELTON V L. Abrasive Flow Finishing of Stereolithography Prototypes[J]. Rapid Prototyping Journal, 1998, 4(2):56-67. [9]FURUMOTO T, UEDA T, AMINO T, et al. Finishing Performance of Cooling Channel with Face Protuberance inside the Molding Die[J]. Journal of Materials Processing Technology, 2012, 212(10):2154-2160. [10]周顺新. 磨粒流加工技术及其在压缩机叶轮上的应用[J]. 现代制造技术与装备, 2017(2):155-156. ZHOU Shunxin. Abrasive Flow Processing Technology and Its Application in Compressor[J]. Modern Manufacturing Technology and Equipment,2017(2):155-156. [11]ZHANG Y, ZOU Y. Study of Corrective Abrasive Finishing for Plane Surfaces Using Magnetic Abrasive Finishing Processes[J]. Nanotechnology and Precision Engineering, 2021, 4(3):5-15. [12]XIE H, ZOU Y, DONG C, et al. Study on the Magnetic Abrasive Finishing Process Using Alternating Magnetic Field:Investigation of Mechanism and Applied to Aluminum Alloy Plate[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102:1509-1520. [13]邓超, 韩冰, 陈燕. 磁研磨法对钛合金弯管内表面的抛光研究[J]. 航空制造技术, 2015, 472(3):61-63. DENG Chao, HAN Bing, CHEN Yan. Study of Inner Surface Polishing of Titanium Alloy Elbow Pipe by Magnetic Abrasive Finishing[J]. Aeronautical Manufacturing Technology, 2015, 472(3):61-63. [14]杨海吉, 张晓君, 陈燕, 等. 磁力研磨精密抛光4×150 mm TC4管内表面的试验研究[J]. 表面技术, 2017, 46(12):259-264. YANG Haiji, ZHANG Xiaojun, CHEN Yan, et al. Polishing of Inner Surface of 4×150 mm TC4 Tube by Magnetic Abrasive Finishing[J]. Surface Technology,2017, 46(12):259-264. [15]JHA S, JAIN V K. Design and Development of the Magnetorheological Abrasive Flow Finishing (MRAFF) Process[J]. International Journal of Machine Tools & Manufacture, 2004, 44(10):1019-1029. [16]JHA S, JAIN V K. Nanofinishing of Silicon Nitride Workpieces Using Magnetorheological Abrasive Flow Finishing[J]. International Journal of Nanomanufacturing, 2006, 1:17-25. [17]JHA S, JAIN V K. Modeling and Simulation of Surface Roughness in Magnetorheological Abrasive Flow Finishing Process[J]. Wear, 2006, 261(7):856-866. [18]JONES A R, HULL J B. Ultrasonic Flow Polishing[J]. Ultrasonics, 1998, 36(1/5):97-101. [19]LI H, REN K, YIN Z, et al. Review of Ultrasonic Vibration-assisted Abrasive Flow Polishing Technology[J]. Journal of Mechanical Engineering, 2021, 57(9):233-253. [20]MULIK R S, PANDEY P M. Experimental Investigations and Modeling of Finishing Force and Torque in Ultrasonic Assisted Magnetic Abrasive Finishing[J]. Journal of Manufacturing Science and Engineering, 2012, 134:051008. [21]VENKATESH G, SHARMA A K, KUMAR P. On Ultrasonic Assisted Abrasive Flow Finishing of Bevel Gears[J]. International Journal of Machine Tools & Manufacture, 2015, 89:29-38. [22]YU T, GUO X, WANG Z, et al. Effects of the Ultrasonic Vibration Field on Polishing Process of Nickel-based Alloy Inconel718[J]. Journal of Materials Processing Technology, 2019, 273:116228. [23]FARWAHA H S, DEEPAK D, BRAR G S. Design and Performance of Ultrasonic Assisted Magnetic Abrasive Finishing Combined with Electrolytic Process Set Up for Machining and Finishing of 316L Stainless Steel[J]. Materials Today:Proceedings, 2020, 33(3):1626-1631. [24]谭悦, 陈燕. 电解复合磁力研磨GH4169管内表面的光整研究[J]. 电镀与精饰, 2020, 42(1):27-32. TAN Yue, CHEN Yan. Surface Finishing of GH4169 Tube by Electrolytic Composite Magnetic Grinding[J]. Plating & Finishing,2020, 42(1):27-32. [25]DABROWSKI L, MARCINIAK M, WIECZOREK W, et al. Advancement of Abrasive Flow Machining Using an Anodic Solution[J]. Journal of New Materials for Electrochemical Systems, 2006, 9(4):439-445. [26]BRAR B S, WALIA R S, SINGH V P. Electrochemical-aided Abrasive Flow Machining (ECA2 FM) Process:a Hybrid Machining Process[J]. International Journal of Advanced Manufacturing Technology, 2015, 79:329-342. [27]刘文浩, 陈燕, 王杰, 等. SLM成型零件型腔内表面电解辅助磁粒研磨加工研究[J]. 中国表面工程, 2021, 34(3):100-109. LIU Wenhao, CHEN Yan, WANG Jie, et al. Study on Electrolysis Assisted Magnetic Abrasive Finishing of SLM Parts Cavity Surface[J]. China Surface Engineering, 2021,34(3):100-109. [28]WALIA R S, SHAN H S, KUMAR P. Abrasive Flow Machining with Additional Centrifugal Force Applied to the Media[J]. Machining Science and Technology, 2006, 10(3):341-354. [29]SANKAR M R, JAIN V K, RAMKUMAR J. Experimental Investigations into Rotating Workpiece Abrasive Flow Finishing[J]. Wear, 2009, 267(1):43-51. [30]MALI H S, MANNA A. An Experimental Investigation during Finishing of Particulate Reinforced Al/10 wt% SiCp-MMC on Developed AFF Setup[J]. International Journal of Manufacturing Technology and Management, 2014, 28(1):114-131. [31]刘薇娜, 孙冉, 张雪瑶, 等. 复杂曲面软性磨粒流抛光可行性研究[J]. 机械工程师, 2017(4):36-38. LIU Weina, SUN Ran, ZHANG Xueyao, et al. Feasibility Study on Soft Abrasive Flow Polishing of Complex Curved Surface[J]. Mechanical Engineer,2017(4):36-38. [32]GROVER V, SINGH A K. A Novel Magnetorheological Honing Process for Nano-finishing of Variable Cylindrical Internal Surfaces[J]. Materials and Manufacturing Processes, 2017, 32(5):573-580. [33]SAMBHARIA J, MALI H S. Characterisation and Performance Evaluation of Developed Alternative Polymer Abrasive Gels for Abrasive Flow Finishing Process[J]. International Journal of Precision Technology, 2015, 5(3/4):185-200. [34]SANKAR M R, JAIN V K, RAMKUMAR J, et al. Rheological Characterization of Styrene-butadiene Based Medium and Its Finishing Performance Using Rotational Abrasive Flow Finishing Process[J]. International Journal of Machine Tools & Manufacture, 2011, 51(12):947-957. [35]SINGH P, SINGH L, SINGH S. Analyzing Process Parameters for Finishing of Small Holes Using Magnetically Assisted Abrasive Flow Machining Process[J]. Journal of Bio- and Tribo-corrosion, 2019, 6:17. [36]UHLMANN E, SCHMIEDEL C, WENDLER J. CFD Simulation of the Abrasive Flow Machining Process[J]. Procedia CIRP, 2015, 31:209-214. [37]DUVAL-CHANEAC M S, HAN S, CLAUDIN C, et al. Experimental Study on Finishing of Internal Laser Melting (SLM) Surface with Abrasive Flow Machining (AFM)[J]. Precision Engineering, 2018,54:1-6. [38]HAN S, SALVATORE F, RECH J, et al. Abrasive Flow Machining (AFM) Finishing of Conformal Cooling Channels Created by Selective Laser Melting(SLM)[J]. Precision Engineering, 2020, 64:20-33. [39]郭贤烙, 肖鑫, 易翔, 等. 铜及铜合金化学抛光及钝化的研究[J]. 表面技术, 2001, 30(2):35-39. GUO Xianluo, XIAO Xin, YI Xiang, et al. Study on Chemical Polishing and Passivation of Copper and Copper Alloy[J]. Surface Technology,2001, 30(2):35-39. [40]杜炳志, 漆红兰. 电化学抛光技术新进展[J]. 表面技术, 2007. DU Bingzhi, QI Honglan. Development of Electrochemical Polishing Technology[J]. Surface Technology,2007. [41]LYCZKOWSKA E, SZYMCZYK P, DYBALA B, et al. Chemical Polishing of Scaffolds Made of Ti-6Al-7Nb Alloy by Additive Manufacturing[J]. Archives of Civil and Mechanical Engineering, 2014, 14(4):586-594. [42]HABIBZADEH S, LING L, SHUM-TIM D, et al. Electrochemical Polishing as a 316L Stainless Steel Surface Treatment Method:towards the Improvement of Biocompatibility[J]. Corrosion Science, 2014, 87:89-100. [43]HUANG C A, CHEN Y C, CHANG J H. The Electrochemical Polishing Behavior of the Inconel 718 Alloy in Perchloric-acetic Mixed Acids[J]. Corrosion Science, 2008, 50(2):480-489. [44]PYKA G, BURAKOWSKI A, KERCKHOFS G, et al. Surface Modification of Ti6Al4V Open Porous Structures Produced by Additive Manufacturing[J]. Advanced Engineering Materials, 2012, 14(6):363-370. [45]SIMKA W, KACZMAREK M, BARON-WIECHE A, et al. Electropolishing and Passivation of NiTi Shape Memory Alloy[J]. Electrochimica Acta, 2010, 55(7):2437-2441. [46]GOMEZ-GALLEGOS A A, MILL F, MOUNT A R. Surface Finish Control by Electrochemical Polishing in Stainless Steel 316 Pipes[J]. Journal of Manufacturing Processes, 2016, 23:83-89. [47]干为民, 朱烨, 王祥志, 等. 电解复合加工研究进展[J]. 常州工学院学报, 2018, 31(1):25-31. GAN Weimin, ZHU Ye, WANG Xiangzhi, et al. Electro-polishing of 316L Stainless Steel Bipolar Plate[J]. Journal of Changzhou Institute of Technology, 2018, 31(1):25-31. [48]HE X L, WANG Y K, WANG Z L, et al. Micro-hole Drilled by EDM-ECM Combined Processing[J]. Key Engineering Materials, 2013,562/565:52-56. [49]刘辰. 三元流闭式叶轮组合电加工技术研究[D]. 南京:南京航空航天大学, 2010. LIU Chen. Research on Combined Electrical Machining of the 3D-flow Closed Impeller[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2010. [50]王军, 赵建社, 刘辰, 等. 闭式整体叶轮叶间流道电解加工阴极设计[J]. 中国机械工程, 2010, 21(12):1414-1417. WANG Jun, ZHAO Jianshe, LIU Chen, et al. Cathode Design in Electrochemical Machining of Cavities among Blades of Closed Integral Impeller[J]. China Mechanical Engineering,2010,21(12):1414-1417. [51]唐霖, 范植坚, 朱秋林. 闭式叶轮电解-电火花组合加工技术研究[C]∥第16届全国特种加工学术会议论文集(上).厦门,2015:674-680. TANG Lin, FAN Zhijian, ZHU Qiulin. Research on Electrolysis-electric Discharge Combined Machining Technology of Closed Impeller[C]∥Proceedings of the 16th National Special Processing Conference (Part 1). Xiamen, 2015:674-680. [52]LIU J W, YUE T M, GUO Z N. Grinding-aided Electrochemical Discharge Machining of Particulate Reinforced Metal Matrix Composites[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(9/12):2349-2357. [53]干为民, 王祥志, 徐波, 等. 数控电解机械复合加工技术研究[C]∥第16届全国特种加工学术会议论文集(上). 厦门,2015:652-656. GAN Weimin, WANG Xiangzhi, XU Bo, et al. Research on CNC Electrolytic Mechanical Compound Processing Technology[C]∥Proceedings of the 16th National Special Processing Conference (Part 1). Xiamen, 2015:652-656. [54]ZHAO C, QU N, TANG X. Electrochemical Mechanical Polishing of Internal Holes Created by Selective Laser Melting[J]. Journal of Manufacturing Processes, 2021, 64:1544-1562. [55]赵鑫. 3D打印钛合金内流道复合抛光方法及机理研究[D]. 西安:西安理工大学, 2021. ZHAO Xin. Study on Compound Polishing Method and Mechanism of 3D Printing Titanium Alloy Inner Channel[D]. Xian:Shaanxi University of Technology, 2021. [56]HOCHENG H, KUO K L. Fundamental Study of Ultrasonic Polishing of Mold Steel[J]. International Journal of Machine Tools & Manufacture, 2002, 42(1):7-13. [57]ZHANG C G, ZHANG Y, ZHANG F H. Mechanism of Ultrasonic-pulse Electrochemical Compound Machining Based on Particles[J]. Journal of Central South University, 2014, 21(1):151-159. [58]SINGH H, JAIN P K. Influence of Ultrasonic Vibrations on Process Performance of Electrochemical Honing[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87:1057-1066. [59]COTEA M, SLTINEANU L, DODUN O, et al. Electrochemical Discharge Machining of Small Diameter Holes[J]. International Journal of Material Forming, 2008, 1:1327-1330. [60]CHENG C P, WU K L, MAI C C, et al. Magnetic Field-assisted Electrochemical Discharge Machining[J]. Journal of Micromechanics and Microengineering, 2010, 20(7):075019. [61]姚庆. 异型零件电解质—等离子抛光工艺的研究与应用[D].秦皇岛:燕山大学, 2018. YAO Qing. Research and Application of Electrolytic Plasma Polishing Technology for Profiled Parts[D].Qinhuangdao:Yanshan University, 2018. [62]王季. 金属表面电解质等离子抛光及其工艺的研究[D]. 哈尔滨:哈尔滨工业大学, 2013. WANG Ji. Research on Metal Surface Electrolysis and Plasma Polishing and Process[D]. Harbin:Harbin Institute of Technology, 2013. [63]王季, 索来春, 关丽丽, 等. 电解质等离子抛光表面粗糙度随时间变化规律[J]. 哈尔滨工程大学学报, 2013, 34(2):227-232. WANG Ji, SUO Laichun, GUAN Lili. Regularity of Surface Roughness with Polishing Time in Electrolysis and Plasma Polishing[J]. Journal of Harbin Engineering University,2013,34(2):227-232. [64]WANG J, SUO L, GUAN L, et al. Analytical Study on Mechanism of Electrolysis and Plasma Polishing[C]∥Proceedings of the 3rd International Conference on Manufacturing Science and Engineering (ICMSE 2012). Xiamen, 2012:350-353. [65]WANG J, SUO L, FU Y, et al. Study on Material Removal Rate of Electrolysis and Plasma Polishing[C]∥IEEE International Conference on Information and Automation (ICIA). Shenyang, 2012:917-922. [66]VANA D. Surface Properties of the Stainless Steel X10 CrNi 18/10 after Aplication of Plasma Polishing in Electrolyte[J].International Journal of Modern Engineering Research, 2013, 3(2):788-792. [67]段海栋, 孙桓五, 纪刚强, 等. 电解质等离子体抛光316LVM表面形貌及电化学特性[J]. 表面技术, 2021, 50(8):396-403. DUAN Haidong, SUN Huanwu, JI Gangqiang, et al. Surface Morphology and Electrochemical Characteristics of 316LVM Polished by Electrolytic Plasma[J]. Surface Technology, 2021, 50(8):396-403. [68]BELKIN P N, SILKIN S A, DYAKOV I G, et al. Influence of Plasma Electrolytic Polishing Conditions on Surface Roughness of Steel[J]. Surface Engineering and Applied Electrochemistry, 2020, 56(1):55-62. [70]DURADJI V N, KAPUTKIN D E, DURADJI A Y. Aluminum Treatment in the Electrolytic Plasma during the Anodic Process[J]. Journal of Engineering Science and Technology Review, 2017, 10(3):81-84. [71]隗倩. 基于小型电解等离子抛光机的铝合金配方优化及应用研究[D]. 哈尔滨:哈尔滨工业大学, 2015. WEI Qian. Research on Optimization and Application of Aluminium Formula Based on The Small Electrolysis Plasma Polishing Machine[D]. Harbin:Harbin Institute of Technology,2015. [72]NESTLER K, BOTTGER-HILLER F, ADAMITZKI W, et al. Plasma Electrolytic Polishing:an Overview of Applied Technologies and Current Challenges to Extend the Polishable Material Range[J]. Procedia CIRP, 2016, 42:503-507. [73]GUPTA P, TENHUNDFELD G, DAIGLE E O, et al. Electrolytic Plasma Technology:Science and Engineering:an Overview[J]. Surface & Coatings Technology, 2007, 201(21):8746-8760. [74]SMYSLOVA M K, TAMINDAROV D R, PLOTNIKOV N V, et al. Surface Electrolytic-plasma Polishing of Ti-6Al-4V Alloy with Ultrafine-grained Structure Produced by Severe Plastic Deformation[J]. IOP Conference Series:Materials Science and Engineering, 2018, 461:012079. [77]ABLYAZ T R, MURATOV K R, RADKEVICH M M, et al. Electrolytic Plasma Surface Polishing of Complex Components Produced by Selective Laser Melting[J]. Russian Engineering Research, 2018, 38(6):491-492. [78]SEO B, PARK H K, KIM H G, et al. Corrosion Behavior of Additive Manufactured CoCr Parts Polished with Plasma Electrolytic Polishing[J]. Surface & Coatings Technology, 2021, 406:126640. [79]STEPPUTAT V N, ZEIDLER H, SAFRANCHIK D, et al. Investigation of Post-processing of Additively Manufactured Nitinol Smart Springs with Plasma-electrolytic Polishing[J]. Materials, 2021, 14(15):4093. [80]KASHAPOV L N, KASHAPOV N F, KASHAPOV R N, et al. Plasma Electrolytic Treatment of Products after Selective Laser Melting[J]. Journal of Physics:Conference Series, 2016, 669:012029. [81]王季, 索来春, 付宜利. 电解质等离子抛光液中硫酸铵含量的检测方法[J]. 材料科学与工艺, 2014, 22(2):30-35. WANG Ji, SUO Laichun, FU Yili. Detecting the Mass Fraction of Ammonium Sulfate in Polishing Solution in Electrolysis and Plasma Polishing[J]. Materials Science and Technology,2014, 22(2):30-35. [82]DANILOV I, HACKERT-OSCHATZCHEN M, ZINECKER M, et al. Process Understanding of Plasma Electrolytic Polishing through Multiphysics Simulation and Inline Metrology[J]. Micromachines, 2019, 10(3):214. [83]ZAKHAROV S V, KOROTKIKH M T. Electrolyte-plasma Polishing Ionization Model[M]∥EVGRAFOV A N. Advances in Mechanical Engineering. Saint Petersburg:Springer Cham, 2020:193-208. [84]RADKEVICH M M, KUZMICHEV I S. Technological Schemes for Elongated Foramen Internal Surface Finishing by Forced Electrolytic-plasma Polishing[M]∥EVGRAFOV A N. Advances in Mechanical Engineering. Saint Petersburg:Springer Cham, 2020:102-111. [85]CORNELSEN M, DEUTSCH C, SEITZ H. Electrolytic Plasma Polishing of Pipe Inner Surfaces[J]. Metals, 2017, 8(1):12. [86]NARAYANAN T, KIM J, PARK H W. High Performance Corrosion and Wear Resistant Ti-6Al-4V Alloy by the Hybrid Treatment Method[J]. Applied Surface Science, 2020, 504:144388. [87]HUANG Y, WANG C Y, DING F, et al. Principle, Process, and Application of Metal Plasma Electrolytic Polishing:a Review[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114:1893-1912. |
[1] | 张镇, 郭策, 胡财吉, 郑威. 基于增材制造技术的自修复结构设计及修复性能研究[J]. 中国机械工程, 2024, 35(01): 144-151. |
[2] | 薛凯, 郭润兰, 黄晖阳, 黄华. 基于点云数据的增材制造模型结构优化方法[J]. 中国机械工程, 2023, 34(20): 2482-2488. |
[3] | 柯庆镝, 罗俊友, 蒋守志, 黄海鸿, . 基于涂层材料分布状态的超声应力反演模型构建[J]. 中国机械工程, 2023, 34(18): 2230-2237. |
[4] | 刘英杰, 胡强, 赵新明, 张少明, 黄帅, 王永慧. 汽车发动机连接支架拓扑优化及增材制造研究[J]. 中国机械工程, 2023, 34(18): 2238-2267. |
[5] | 高国富, 王得宇, 潘贤荣, 乔淮, 浮宗霞, 向道辉, 赵波. 纵向超声辅助螺旋磨削Ti3Al微孔的磨削力模型研究[J]. 中国机械工程, 2023, 34(11): 1280-1286. |
[6] | 方学伟, 蒋笑, 王喆, 武晓康, 黄科. ER120S-G高强钢电弧增材制造的工艺优化[J]. 中国机械工程, 2023, 34(02): 218-225. |
[7] | 韩光超, , 杨家凯, 叶泽玖, 徐林红, 张海鸥, 杨海涛. 电弧微铸锻增材制造AlMgSc合金纵扭复合超声振动干铣削加工特性研究[J]. 中国机械工程, 2022, 33(24): 2971-2979,2989. |
[8] | 孟亮, 仲明哲, 李文彪, 夏凉, 高彤, 朱继宏, 张卫红, . 面向增材制造的航空发动机外部系统支架拓扑优化设计[J]. 中国机械工程, 2022, 33(23): 2822-2832. |
[9] | 邹无有, 杜纯, 艾建平, 单斌. 面向催化剂载体应用的TiO2多孔陶瓷结构优化设计[J]. 中国机械工程, 2022, 33(23): 2833-2843. |
[10] | 焦晨, 晁龙, 朱磊, 沈理达, 梁绘昕, 戴宁, 王长江, 孙骏. 面向骨科植入物的仿生多孔结构设计与制造方法[J]. 中国机械工程, 2022, 33(23): 2844-2850. |
[11] | 何智成, 杨丁丁, 姜潮, 伍毅, 江和昕. 基于增材制造各向异性的强度约束拓扑优化[J]. 中国机械工程, 2022, 33(19): 2372-2380,2393. |
[12] | 熊晓晨, 秦训鹏, 华林, 胡泽启, 纪飞龙, . 复合式增材制造技术研究现状及发展[J]. 中国机械工程, 2022, 33(17): 2087-2097. |
[13] | 仲杨, 秦晓波, 郑志镇, 李建军, 王承. 石化容器用2.25Cr-1Mo-0.25V钢的CMT电弧熔丝增材制造工艺及组织性能研究[J]. 中国机械工程, 2022, 33(10): 1251-1259. |
[14] | 田雪雪, 赵纪元, 卢秉恒, 王磊. 增材制件内部缺陷埋藏深度的激光超声定量检测[J]. 中国机械工程, 2022, 33(08): 952-959. |
[15] | 韩庆璘, 高佳, 李鑫磊, 张广军. 异质辅助填丝熔化极电弧增材制造熔敷金属成分与性能调节[J]. 中国机械工程, 2022, 33(07): 858-863. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||