[1]ZHU D, ZHANG X, DING H. Tool Wear Characteristics in Machining of Nickel-based Superalloys[J]. International Journal of Machine Tools and Manufacture, 2013, 64:60-77.
[2]AKHTAR W, SUN J F, CHEN W Y. Effect of Machining Parameters on Surface Integrity in High Speed Milling of Super Alloy GH4169/Inconel 718[J]. Materials and Manufacturing Processes, 2016, 31(5):620-627.
[3]LI Q, GONG Y D, CAI M, et al. Research on Surface Integrity in Milling Inconel 718 Superalloy[J]. International Journal of Advanced Manufacturing Technology, 2021, 92(1/4):1449-1463.
[4]WANY X Y, HUANG C Z, ZOU B, et al. Experimental Study of Surface Integrity and Fatigue Life in the Face Milling of Inconel 718[J]. Frontiers of Mechanical Engineering, 2018, 13(2):243-250.
[5]洪东波, 袁军堂, 殷增斌. SiAlON陶瓷刀具材料及其制备技术研究进展[J]. 机械制造与自动化, 2021, 50(4):1-8.
HONG Dongbo, YUAN Juntang, YIN Zengbin. Research Progress of SiAlON Ceramic Cutting Tool Material and Its Preparation Technology[J]. Machine Building and Automation, 2021, 50(4):1-8.
[6]ACIKBAS N C, KARA F. The Effect of z Value on Intergranular Phase Crystallization of α1/β1-SiAlON-TiN Composites[J]. Journal of the European Ceramic Society, 2017, 37(3):923-930.
[7]GUO F Z, YUAN J T, HONG D B, et al. Influence of Powder Mixing Processes on Phase Composition, Microstructure, and Mechanical Properties of α/β-SiAlON Ceramic Tool Materials[J]. Ceramics International, 2021, 47(21):30256-30265.
[8]CELIK A, ALAGAC M S, TURAN S, et al. Wear Behavior of Solid SiAlON Milling Tools during High Speed Milling of Inconel 718[J]. Wear, 2017, 378/379:58-67.
[9]GUO F Z, YIN Z B, HONG D B, et al. Cutting Performance of a New Spark Plasma Sintered SiAlON Ceramic Tool for High-speed Milling of Inconel 718[J]. International Journal of Advanced Manufacturing Technology, 2022, 119:7327-7338.
[10]SHAALABY M A, VELDHUIS S C. Effect of Cutting Speed on Chipping and Wear of the SiAlON Ceramic Tool in Dry Finish Turning of the Precipitation Hardenable IN100 Aerospace Superalloy[J]. Journal of Tribology, 2019, 141(2):021604.
[11]袁哲俊,刘献礼. 金属切削刀具设计手册[M]. 2版. 北京:机械工业出版社, 2018.
YUAN Zhejun, LIU Xianli. Metal Cutting Tool Design Manual[M]. 2nd ed. Beijing:Machinery Industry Press, 2018.
[12]赵炳真,商宏谟,辛节之. 现代刀具设计与应用[M]. 北京:国防工业出版社, 2014.
ZHAO Bingzhen, SHANG Hongmo, XIN Jiezhi. Modern Tool Design and Application[M]. Beijing:National Defense Industry Press, 2014.
[13]HE G, LIU X, WU C, et al. Study on the Negative Chamfered Edge and Its Influence on the Indexable Cutting Insert’s Lifetime and Its Strengthening Mechanism[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84:1229-1237.
[14]SUN T, QIN L F, FU Y C, et al. Mathematical Modeling of Cutting Layer Geometry and Cutting Force in Orthogonal Turn-milling[J]. Journal of Materials Processing Technology, 2021, 290:116992.
[15]NALBANT M, ALTIN A, GOKKAYA H. The Effect of Cutting Speed and Cutting Tool Geometry on Machinability Properties of Nickel-base Inconel 718 Super Alloys[J]. Materials & Design, 2007, 28(4):1334-1338.
[16]OGHBAEI M, MIRZAEE O. Microwave Versus Conventional Sintering:a Review of Fundamentals, Advantages and Applications[J]. Journal of Alloys and Compounds, 2010, 494(1/2):175-189.
[17]ALEM S A A, LATIFI R, ANGIZI S, et al. Microwave Sintering of Ceramic Reinforced Metal Matrix Composites and Their Properties:a Review[J]. Materials and Manufacturing Processes, 2020, 35(3):303-327.
[18]HONG D B, YUAN J T, YIN Z B, et al. Ultrasonic-assisted Preparation of Complex-shaped Ceramic Cutting Tools by Microwave Sintering[J]. Ceramics International, 2020, 46(12):20183-20190.
[19]ZHU Z Y, YIN Z B, HONG D B, et al. Preparation of Complex-shaped Al2O3/SiCp/SiCw Ceramic Tool by Two-step Microwave Sintering[J]. Ceramics International, 2020, 46:27362-27372.
[20]殷增斌,朱智勇,王子祥,等.复杂刃形陶瓷刀具微波烧结技术研究[J].中国机械工程,2022,33(8):899-907.
YIN Zengbin, ZHU Zhiyong, WANG Zixiang, et al[J]. Complex-shaped Ceramic Tool Prepared by Microwave Sintering[J]. China Mechanical Engineering, 2022, 33(8):899-907.
[21]HONG D B, YIN Z B, GUO F Z, et al. Microwave Synthesis of Duplex α/β-SiAlON Ceramic Cutting Inserts:Modifying m, n, z Values, Synthesis Temperature, and Excess Y2O3 Synthesis Additive[J]. Journal of Advanced Ceramics, 2022, 11:589-602.
[22]HONG D B, YIN Z B, GUO F Z, et al. Improvement of Cutting Performance of High x Value α/β-SiAlON Ceramic Cutting Inserts via Tailoring Microstructure and Oxidation Behavior[J]. International Journal of Refractory Metals and Hard Materials, 2023, 111:106087.[23]CHEN M,JIANG L,GUO G Q,et al. Experimental and FEM Study of Coated and Uncoated Tools Used for Dry Milling of Compacted Graphite Cast Iron[J]. Transactions of Tianjin University,2011,17(4):235-241.
[24]SUN H, ZOU B, CHEN W. Cutting Performance of Silicon-based Ceramic End Milling Tools in High-efficiency Machining of GH4099 under Dry Condition[J]. The International Journal of Advanced Manufacturing Technology, 2022, 118:1719-1732.
[25]EVANS A G, CHARLES E A. Fracture Toughness Determinations by Indentation[J]. Journal of the American Ceramic Society, 1974, 59(7/8):371-372.
[26]CHENG Y B, THOMPSON D P. Aluminum-containing Nilrogen Melilite Phases[J]. Journal of the American Ceramic Society, 1944, 77(1):143-148.
[27]ACIKBAS N C, YURDAKUL H, MANDAL H, et al. Effect of Sintering Conditions and Heat Treatment on the Properties, Microstructure and Machining Performance of Alpha-beta-SiAlON Ceramics[J]. Journal of the European Ceramic Society, 2012, 32(7):1321-1327.
|