[1]聂昕,成艾国,钟志华,等. 二维截面法在精确预测汽车梁类件回弹上的应用[J].汽车工程,2007(1):83-86.
NIE Xin, CHENG Aiguo, ZHONG Zhihua, et al. Application of Two-dimensional Cross-section Method in Accurately Predicting Springback of Automobile Beam Parts[J].Automotive Engineering, 2007(1):83-86.
[2]聂昕,申丹凤. 高强度梁类件回弹及补偿的二维截面法修正[J].中国机械工程,2013,24(2):180-185.
NIE Xin, SHEN Danfeng. Two-dimensional Section Method for Springback and Compensation of High Strength Beam Parts[J]. China Mechanical Engineering, 2013,24(2):180-185.
[3]刘迪辉,吴磊,李光耀,等. 任意截面线回弹理论计算方法及应用[J].锻压技术,2009,34(6):143-147.
LIU Dihui, WU Lei, LI Guangyao, et al. Calculation Method and Application of Springback Theory for Arbitrary Section Line[J]. Forging & Stamping Technology, 2009,34(6):143-147.
[4]吴磊,李光耀,曹昭展. 基于截面法的冲压回弹特征评价方法[J].中国机械工程,2009,20(19):2280-2283.
WU Lei, LI Guangyao, CAO Zhaozhan. Evaluation Method of Stamping Springback Characteristics Based on Section Method[J]. China Mechanical Engineering, 2009,20(19) : 2280-2283.
[5]高志国,徐流杰. 基于响应面法的700 MPa高强度低合金钢带冷冲压回弹分析[J]. 热加工工艺,2018,47(17):147-150.
GAO Zhiguo, XU Liujie. Cold Stamping Springback Analysis of 700 MPa High Strength Low Alloy Steel Strip Based on Response Surface Method[J].Hot Working Technology, 2018,47(17):147-150.
[6]张旭,周杰. 超高强度钢防撞梁热成形改冷冲压工艺设计及优化[J]. 重庆大学学报,2011,34(1):77-81.
ZHANG Xu, ZHOU Jie. Process Design and Optimization of Hot Forming to Cold Stamping for Ultra-high Strength Steel Anti-collision Beam[J]. Journal of Chongqing University, 2011,34(1):77-81.
[7]黄仁勇. 高强钢冲压成形过程中的扭曲回弹及补偿研究[D]. 成都:西南交通大学,2018.
HUANG Renyong. Research on Distortion Springback and Compensation in Stamping Process of High Strength Steel[D]. Chengdu:Southwest Jiaotong University, 2018.
[8]CRINA A. Control the Springback of Metal Sheets by Using an Artificial Neural Network[J]. AIP Conference Proceedings, 2007,907(1):235-238.
[9]HAMBLI R, GUERIN F. Application of a Neural Network for Optimum Clearance Prediction in Sheet Metal Blanking Processes[J]. Finite Elements in Analysis & Design, 2003,39(11):1039-1052.
[10]龙仕彰. 基于人工智能的冲压件复合参数数值优化技术研究与应用[D].杭州:浙江大学,2007.
LONG Shizhang. Research and Application of Numerical Optimization Technology of Composite Parameters of Stamping Parts Based on Artificial Intelligence [D].Hangzhou: Zhejiang University, 2007.
[11]张玉平. 基于人工神经网络U形件回弹预测的研究[D]. 重庆:重庆大学,2007.
ZHANG Yuping. Research on Springback Prediction of U-shaped Parts Based on Artificial Neural Network [D]. Chongqing: Chongqing University, 2007.
[12]JAREMENKO C, RAVIKUMAR N, AFFRONTI E, et al. Determination of Forming Limits in Sheet Metal Forming Using Deep Learning[J]. Materials (Basel, Switzerland), 2019,12(7):1051-1064.
[13]WU Huaiqin. Global Stability Analysis of a General Class of Discontinuous Neural Networks with Linear Growth Activation Functions[J].Information Sciences ,2009 (19):3432-3441.
[14]HE K, ZHANG X, REN S, et al. Delving Deep into Rectifiers: Surpassing Human-level Performance on ImageNet Classification[C]∥2015 IEEE International Conference on Computer Vision (ICCV). Santiago, 2015: 1026-1034.
[15]KINGMA D, BA J. Adam: a Method for Stochastic Optimization[J]. Computer Science, 2014.
[16]SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a Simple Way to Prevent Neural Networks from Overfitting[J]. Journal of Machine Learning Research, 2014, 15(1):1929-1958.
[17]晏佳伟,胡启,王振振,等. 不同硬化模型对第3代超高强度钢板冲压回弹预测的比较[J]. 上海交通大学学报,2017,51(11):1334-1339.
YAN Jiawei, HU Qi, WANG Zhenzhen, et al. Comparison of Different Hardening Models for Springback Prediction of the Third Generation Ultra-high Strength Steel Sheet[J]. Journal of Shanghai Jiao Tong University, 2017,51 (11): 1334-1339.
[18]刘雁冰. 车身梁类件冲压回弹分析及控制研究[D]. 重庆:重庆理工大学,2014.
LIU Yanbing. Research on Stamping Springback Analysis and Control of Body Beam Parts [D]. Chongqing: Chongqing University of Technology, 2014.
[19]冯斌,毛建中,胡晖.基于BP神经网络的条带刚凸特征回弹预测[J].锻压技术,2020,45(3):20-26.
FENG Bin, MAO Jianzhong, HU Hui. Prediction of Springback Based on BP Neural Network[J].Forging & Stamping Technology, 2020,45 (3) : 20-26.
|