[1]MASLEN E H, SCHWEITZER G, BLEULER H, et al. Magnetic Bearings:Theory, Design, and Application to Rotating Machinery[M]. Berlin:Springer-Verlag, 2009.
[2]SIVA SRINIVAS R, TIWARI R, KANNABABU C. Application of Active Magnetic Bearings in Flexible Rotordynamic Systems—a State-of-the-art Review[J]. Mechanical Systems and Signal Processing, 2018, 106:537-572.
[3]纪历, 马雪晴, 陈震民. 磁悬浮高速电机转子低频振动机理及补偿方法[J]. 中国机械工程, 2022, 33(17):2053-2060.
JI Li, MA Xueqing, CHEN Zhenmin. Low Frequency Vibration Mechanism for AMB High-speed Motor Rotor Systems and Its Compensation Strategy[J]. China Mechanical Engineering, 2022, 33(17):2053-2060.
[4]汪军水, 贾翔宇, 张剀, 等. 磁轴承转子跌落在保护轴承上的动力学研究[J].中国机械工程,2022, 33(20):2403-2413.
WANG Junshui, JIA Xiangyu, ZHANG Kai, et al. Research on Dynamics of Magnetic Bearing Rotor Drop on Back-up Bearings[J]. China Mechanical Engineering,2022, 33(20):2403-2413.
[5]ISHII T, KIRK R G. Transient Response Technique Applied to Active Magnetic Bearing Machinery during Rotor Drop[J]. Proceedings of the ASME Design Engineering Technical Conference, 1996, 118(2):154-163.
[6]王东雄, 王念先, 陈奎生. 磁悬浮双转子系统的定点碰摩特性[J]. 中国机械工程, 2021, 32(14):1686-1699.
WANG Dongxiong, WANG Nianxian, CHEN Kuisheng. Fixed-point Rubbing Characteristics of Magnetic Suspended Dual-rotor Systems[J]. China Mechanical Engineering, 2021, 32(14):1686-1699.
[7]CAO J, ALLAIRE P, DIMOND T, et al. Auxiliary Bearing System Optimization for AMB Supported Rotors Based on Rotor Drop Analysis—Part Ⅱ:Optimization for Example Vertical and Horizontal Machines[C]∥Proceedings of the ASME Turbo Expo.Seoul, 2016:V07AT30A002.
[8]FONSECA C A, SANTOS I, WEBER H I. An Experimental and Theoretical Approach of a Pinned and a Conventional Ball Bearing for Active Magnetic Bearings[J]. Mechanical Systems and Signal Processing, 2020, 138:106541.
[9]孔亚楠. 立式磁悬浮轴承系统中保护轴承的选型及碰撞特性分析[D]. 洛阳:河南科技大学, 2020.
KONG Yanan. Selection and Analysis of Collision Characteristics of Auxiliary Bearing in Vertical Magnetic Suspension Bearing System[D]. Luoyang:Henan University of Science and Technology, 2020.
[10]朱益利. 主动磁悬浮轴承系统中新型保护轴承的研究[D]. 南京:南京航空航天大学, 2013.
ZHU Yili. Research on New Type Catcher Bearings in active Magnetic Bearing System[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2013.
[11]HAWKINS L, MCMULLEN P, VUONG V. Development and Testing of the Backup Bearing System for an AMB Energy Storage Flywheel[C]∥ASME Turbo Expo 2007:Power for Land, Sea, and Air. Montreal,2007:1055-1062.
[12]International Standardization Organization. Mechanical Vibration-vibration of Rotating Machinery Equipped with Active Magnetic Bearings—Part 4:Technical Guidelines:ISO 14839-4:2012[S]. Geneve:International Standardization Organization, 2012.
[13]AHMAD S. Rotor Casing Contact Phenomenon in Rotor Dynamics — Literature Survey[J]. Journal of Vibration and Control, 2010, 16(9):1369-1377.
[14]HAWKINS L, FILATOV A, IMANI S, et al. Test Results and Analytical Predictions for Rotor Drop Testing of an Active Magnetic Bearing Expander/Generator[J]. Journal of Engineering for Gas Turbines and Power, 2007, 129(2):522-529.
[15]SUN G, PALAZZOLO A B, PROVENZA A, et al. Detailed Ball Bearing Model for Magnetic Suspension Auxiliary Service[J]. Journal of Sound and Vibration, 2004, 269(3/5):933-963.
[16]祝长生. 备用轴承碰撞副对电磁轴承失效后转子坠落瞬态响应的影响[J]. 振动工程学报, 2010, 23(5):475-479.
ZHU Changsheng. Effect of Backup Bearing Impact Surface Pairs on Rotor Dropping Transient Response after Active Magnetic Bearing Failure[J]. Journal of Vibration Engineering, 2010, 23(5):475-479.
[17]KRKKINEN A, HELFERT M, AESCHLIMANN B, et al. Dynamic Analysis of Rotor System with Misaligned Retainer Bearings[J]. Journal of Tribology, 2008, 130(2):1-10.
[18]JARROUX C, DUFOUR R, MAHFOUD J, et al. Touchdown Bearing Models for Rotor-AMB Systems[J]. Journal of Sound and Vibration, 2019, 440:51-69.
[19]YU C, SUN Y, WANG H, et al. Dynamic Analysis of Magnetic Bearing Rotor Dropping on Radial and Axial Integrated Auxiliary Bearing[J]. Mechanism and Machine Theory, 2019, 140:622-640.
[20]YU C, ZHU Y, SHI F, et al. Modeling and Experimental Validation of Transient Response of Magnetic Suspension Rotor Contacting with Auto-reducing Clearance Auxiliary Bearing[J]. Journal of Sound and Vibration, 2020, 481:115419.
[21]朱益利, 金超武. 高速重载下双层保护轴承的最大碰撞力及热特性分析[J].中国机械工程, 2016, 27(1):25-31.
ZHU Yili, JIN Chaowu. Maximum Impact Force and Thermal Characteristic Analysis of Double-decker Catcher Bearing Used in High-speed and Heavy-load Conditions[J]. China Mechanical Engineering, 2016, 27(1):25-31.
[22]LYU M, LIU T, WANG Z, et al. A Control Method of the Rotor Re-levitation for Different Orbit Responses during Touchdowns in Active Magnetic Bearings[J]. Mechanical Systems and Signal Processing, 2018, 105:241-260.
[23]SUN G. Rotor Drop and Following Thermal Growth Simulations Using Detailed Auxiliary Bearing and Damper Models[J]. Journal of Sound and Vibration, 2006, 289(1/2):334-359.
[24]YANG G, SHI Z, MO N. Technical Design and Engineering Prototype Experiment of Active Magnetic Bearing for Helium Blower of HTR-PM[J]. Annals of Nuclear Energy, 2014, 71:103-110.
[25]TANGREDI A, MELI E, RINDI A, et al. Development and Experimental Validation of Auxiliary Rolling Bearing Models for Active Magnetic Bearings (AMBs) Applications[J]. International Journal of Rotating Machinery, 2019, 2019:1-19.
[26]HUNT K, CROSSLEY E. Coefficient of Restitution Interpreted as Damping in Vibroimpact [J]. Journal of Applied Mechanics, American Society of Mechanical Engineers, 1975, 42:440-445.
[27]HALMINEN O, KRKKINEN A, SOPANEN J, et al. Active Magnetic Bearing-supported Rotor with Misaligned Cageless Backup Bearings:a Dropdown Event Simulation Model[J]. Mechanical Systems and Signal Processing, 2015, 50/51:692-705.
[28]HARRIS T A, BARNSBY R M. Tribological Performance Prediction of Aircraft Gas Turbine Mainshaft Ball Bearings[J]. Tribology Transactions, 1998, 41(1):60-68.
[29]LIU T, LYU M, WANG Z, et al. An Identification Method of Orbit Responses Rooting in Vibration Analysis of Rotor during Touchdowns of Active Magnetic Bearings[J]. Journal of Sound and Vibration, 2018, 414:174-191.
[30]全国滚动轴承标准化技术委员会.GB/T 34891-2017 滚动轴承 高碳铬轴承钢零件 热处理技术条件[S].北京:中国标准出版社,2017.
National Rolling Bearing Standardization Technical Committee.GB/T 34891-2017 Rolling Bearings-Parts Made from High-carbon Chromium Bearing Steels-Specifications for Heat Treatment[S]. Beijing:China Press,2017.
|