[1]刘祖飞. 基于齿轮修形的变速器啸叫治理[D].长春:吉林大学, 2017.
LIU Zufei. Control of Automotive Gearbox Whine Based on Gear Tooth Modification[D]. Changchun:Jilin University, 2017.
[2]黎志鹏. 某纯电动客车振动噪声试验与性能优化研究[D].长沙:湖南大学, 2018.
LI Zhipeng. Research on Vibration and Noise Experiment and Performance Optimization of the Pure Electric Bus[D]. Changsha:Hunan University, 2018.
[3]薛兵. 磨床砂轮动平衡仪控制系统设计及关键技术[D].郑州:郑州大学, 2017.
XUE Bing. Control System Design and Key Technology of Grinding Wheel Dynamic Balancer[D]. Zhengzhou:Zhengzhou University, 2017.
[4]付豫龙. 基于PLC的砂轮动平衡系统研究[D].杭州:浙江大学, 2015.
FU Yulong. Research on Dynamic Balance System of Grinding Wheel Based on PLC[D]. Hangzhou:Zhejiang University, 2015.
[5]MING Xingzu, GAO Qin, YAN Hongzhi, et al. Mathematical Modeling and Machining Parameter Optimization for the Surface Roughness of Face Gear Grinding[J]. International Journal of Advanced Manufacturing Technology, 2017, 90(9):2453-2460.
[6]周泓曲. 改善齿轮表面纹理的蜗杆砂轮磨削方法研究[D].重庆:重庆大学, 2016.
ZHOU Hongqu. Research on Grinding Method of Worm Grinding Wheel to Improve Gear Surface Texture[D]. Chongqing:Chongqing University, 2016.
[7]陈鹏,曹华军,张应,等. 齿轮高速干式滚切工艺参数优化模型及应用系统开发[J]. 机械工程学报, 2017, 53(1):190-197.
CHEN Peng, CAO Huajun, ZHANG Ying, et al.Optimization Model and Application System Development of Gear High-speed Dry Hobbing Process Parameters[J]. Journal of Mechanical Engineering, 2017, 53(1):190-197.
[8]曹卫东,阎春平,吴电建. 支持少样本的高速滚齿工艺参数优化[J]. 计算机集成制造系统, 2018, 24(10):2502-2513.
CAO Weidong, YAN Chunping, WU Dianjian. Optimization of Cutting Parameters for High-speed Gear Hobbing Based on Small Sample Problem[J]. Computer Integrated Manufacturing Systems, 2018, 24(10):2502-2513.
[9]李聪波,余必胜,肖溱鸽,等. 考虑刀具磨损的数控车削批量加工工艺参数节能优化方法[J]. 机械工程学报, 2021, 57(1):217-229.
LI Congbo, YU Bicheng,XIAO Qinge, et al. An Energy-saving Optimization Method for Numerical Control Turning Batch Processing Parameters Considering Tool Wear[J]. Journal of Mechanical Engineering, 2021, 57(1):217-229.
[10]WU Dayuan, YAN Ping, GUO You, et al. Integrated Optimization Method for Helical Gear Hobbing Parameters Considering Machining Efficiency, Cost and Precision[J]. International Journal of Advanced Manufacturing Technology, 2021, 113(3):735-756.
[11]KHARKA V, JAIN N K, GUPTA K. Predictive Modelling and Parametric Optimization of Minimum Quantity Lubrication-assisted Hobbing Process[J]. International Journal of Advanced Manufacturing Technology, 2020, 109(5):1681-1694.
[12]SHARMA V K, RANA M,SINGH T, et al. Multi-response Optimization of Process Parameters Using Desirability Function Analysis during Machining of EN31 Steel under Different Machining Environments[J]. Materials Today:Proceedings, 2021, 44:3121-3126.
[13]明兴祖,罗旦,刘金华,等. 面齿轮磨削加工工艺参数的优化[J]. 中国机械工程, 2016,27(19):2569-2574.
MING Xingzu, LUO Dan, LIU Jinhua, et al.Stu-dy on Grinding Process Parameters of Face Gear[J]. China Mechanical Engineering, 2016,27(19):2569-2574.
[14]杨苏. 砂轮振动信号提取及动平衡控制装置研制[D].长春:长春工业大学, 2016.
YANG Su.Research on Grinding Wheel Vibration Signal Extraction and Dynamic Balance Control Device[D]. Changchun: Changchun University of Technology, 2016.
[15]尹国强. 新型CBN高速点磨削砂轮磨削性能研究[D].沈阳:东北大学, 2016.
YIN Guoqiang.Research on Grinding Performance of New CBN High Speed Point Grinding Wheel[D]. Shenyang:Northeastern University, 2016.
[16]闫江波. 新型点磨削砂轮磨削性能实验研究[D].沈阳:东北大学, 2014.
YAN Jiangbo. Experimental Research on Grinding Performance of a New Point Grinding Wheel[D]. Shenyang:Northeastern University, 2014.
[17]徐兰英,伍强,何宝兰,等. RV减速器摆线齿轮磨削表面粗糙度试验研究[J]. 机床与液压, 2020, 48(20):49-53.
XU Lanying, WU Qiang, HE Baolan, et al.Experimental Study on Grinding Surface Roughness of Cycloid Gear of RV Reducer[J]. Machine Tool & Hydraulics, 2020, 48(20):49-53.
[18]任平. 遗传算法(综述)[J]. 工程数学学报, 1999(1):3-10.
REN Ping. Genetic Algorithms(Review)[J]. Journal of Engineering Mathematics, 1999(1):3-10.
[19]王利亭,赵秀栩,李娇. 蜗杆砂轮磨齿加工参数优化[J]. 中国机械工程, 2021, 32(17):2136-2141.
WANG Liting, ZHAO Xiuxu, LI Jiao.Grinding Parameters Optimization of Worm Grinding Wheel[J]. China Mechanical Engineering, 2021, 32(17):2136-2141.
|