中国机械工程 ›› 2023, Vol. 34 ›› Issue (10): 1251-1259.DOI: 10.3969/j.issn.1004-132X.2023.10.015

• 工程前沿 • 上一篇    下一篇

轮毂电机驱动越野车原地转向控制

付翔1,2,3;刘泽轩1,2,3;刘道远1,2,3;李东园1,2,3   

  1. 1.武汉理工大学现代汽车零部件技术湖北省重点实验室,武汉,430070
    2.武汉理工大学汽车零部件技术湖北省协同创新中心,武汉,430070
    3.武汉理工大学湖北省新能源与智能网联车工程技术研究中心,武汉,430070
  • 出版日期:2023-05-25 发布日期:2023-06-07
  • 作者简介:付翔,女,1973年生,副教授。研究方向为新能源汽车整车控制技术、新能源汽车动力系统。E-mail:759263695@qq.com。
  • 基金资助:
    武汉理工大学自主创新研究基金(107-3120620906)

Pivot Steering Control of Off-road Vehicles Driven by In-wheel Motors

FU Xiang1,2,3;LIU Zexuan1,2,3 ;LIU Daoyuan1,2,3; LI Dongyuan1,2,3   

  1. 1.Hubei Key Laboratory of Advanced Technology for Automotive Components,Wuhan University 
    of Technology,Wuhan,430070
    2.Hubei Collaborative Innovation Center for Automotive Components Technology,Wuhan University 
    of Technology,Wuhan,430070
    3.Hubei Research Center for New Energy & Intelligent Connected Vehicle,Wuhan University of 
    Technology,Wuhan,430070
  • Online:2023-05-25 Published:2023-06-07

摘要: 针对基于阿克曼转向的越野车最小转弯半径大、转向机动性不足的问题,利用轮毂电机驱动车辆转矩独立可控的优势,开发了路面自适应的原地转向控制策略。构建整车七自由度原地转向动力学模型,阐释原地转向过程中纵横向耦合运动轮胎力的演变规律,建立原地转向阻力矩和横摆力矩随车轮滑转率、路面附着系数变化的量化模型。以转向动力响应性为优化目标设计了不同附着条件下的横摆角速度期望轨迹,并以各轮滑转率安全阈值作为稳定性约束以减小转向中心偏移量,执行层基于模型预测算法进行横摆角速度的跟踪控制,同时引入自适应滑模控制器反馈调节车轮滑转率以确保纵横向运动的稳定性。仿真测试与实车试验表明,开发的原地转向控制策略在高、中、低附路面下均实现了期望原地转向轨迹的精确跟踪,并将转向中心偏移量限制在500 mm以内,提高了越野车原地转向灵活性和横向稳定性,实现了“既快又稳”的原地转向。

关键词: 轮毂电机车辆, 原地转向动力学, 转矩控制, 转向中心偏移量

Abstract: In order to solve the problems of large minimum turning radius and inadequate steering maneuverability of Ackermann steering-based off-road vehicles, a road adaptive pivot steering control strategy was developed by taking advantages of the independent control of vehicle torque driven by in-wheel motors. A seven-degree-of-freedom pivot steering dynamics model was constructed to explain the evolution of the longitudinal and transverse coupled motion tire forces during pivot steering, and a quantitative model was established to quantify the pivot steering resistance moment and transverse sway moment with wheel slip rate and road adhesion coefficient. The desired trajectory of transverse sway angular velocity under different adhesion conditions was designed with steering power responsiveness as the optimization objective, and the safety threshold of each wheel slip rate was used as the stability constraint to reduce the steering center offset. The executive layer tracked the transverse angular velocity based on the model prediction algorithm, while the adaptive sliding mode controller was introduced to adjust the wheel slip rate to ensure the stability of the longitudinal and transverse motions. Simulation tests and real vehicle tests show that the developed pivot steering control strategy achieves accurate tracking of the desired pivot steering trajectory under high, medium and low adhesion surfaces, and limits the steering center offset to within 500 mm, which improves the pivot steering flexibility and lateral stability of the off-road vehicles and realizes "fast and stable" pivot steering. 

Key words:  , in-wheel electric vehicle, pivot steering dynamics, torque control, steering center offset

中图分类号: