中国机械工程 ›› 2023, Vol. 34 ›› Issue (14): 1640-1646.DOI: 10.3969/j.issn.1004-132X.2023.14.001

• 可持续柔性智能制造 • 上一篇    下一篇

融合双重注意力机制与并行门控循环单元的晶圆加工周期预测方法

戴佳斌1,2;张洁1;吴立辉3   

  1. 1.东华大学人工智能研究院,上海,201620
    2.东华大学信息科学与技术学院,上海,201620
    3.上海应用技术大学机械工程学院,上海,201418
  • 出版日期:2023-07-25 发布日期:2023-07-28
  • 通讯作者: 吴立辉(通信作者),男,1981年生,副教授。研究方向为复杂制造系统调度、制造大数据分析、AGV调度。发表论文20余篇。E-mail:wulihui@sit.edu.cn。
  • 作者简介:戴佳斌 ,男,1998年生,硕士研究生。研究方向为大数据。发表论文1篇。E-mail:2211967@mail.dhu.edu.cn。
  • 基金资助:
    国家重点研发计划(2022YFB3305003);国家自然科学基金(U1704156)

A Wafer Cycle Processing Time Prediction Method Incorporating Double Attention Mechanism and Parallel GRU

DAI Jiabin1,2;ZHANG Jie1;WU Lihui3   

  1. 1.Institute of Artificial Intelligence,Donghua University,Shanghai,201620
    2.School of Information Science and Technology,Donghua University,Shanghai,201620
    3.School of Mechanical Engineering,Shanghai Institute of Technology,Shanghai,201418
  • Online:2023-07-25 Published:2023-07-28

摘要: 晶圆制造过程中的生产特征数据大规模、特征间复杂关联和特征样本强相关特性导致晶圆加工周期预测效率低与预测精度不高,因此提出了一种融合双重注意力机制与并行门控循环单元的晶圆加工周期预测方法。首先,利用Relief-F算法对生产特征数据进行降维处理;然后,基于模糊C均值算法对数据样本进行工艺相似性聚类,并设计并行门控循环单元网络来挖掘晶圆lot特征样本间的强相关特性;最后,设计了双重注意力机制来学习关键特征内部及特征与加工周期的复杂关联信息。实验结果表明,所提出方法能有效缩短预测训练时间,提高预测精度

关键词: 晶圆制造, 预测, 并行门控循环单元, 注意力机制

Abstract: Low efficiency and low prediction accuracy were caused by the large scale of production feature data, complex correlation among features, and strong correlation of feature samples in wafer fabrication processes, so a wafer processing cycle prediction method integrating double attention mechanism and parallel GRU was proposed. Firstly, Relief-F algorithm was used to reduce the dimensionality of production feature data. Secondly, a fuzzy C-mean algorithm was used to cluster the process similarity of data samples and design a parallel GRU network to explore the strong correlation among wafer feature samples. Finally, a double attention mechanism was designed to learn the complex correlation information within key features and among features and processing cycle. The experimental results show that the proposed method may effectively reduce the prediction training time and improve the prediction accuracy.

Key words: wafer fabrication, prediction, parallel gated recurrent unit (GRU), attention mechanism

中图分类号: