中国机械工程 ›› 2023, Vol. 34 ›› Issue (15): 1805-1812.DOI: 10.3969/j.issn.1004-132X.2023.15.005

• 智能制造 • 上一篇    下一篇

SPCA和OCHD相结合的旋转机械早期微弱故障检测方法

李鑫1,2;程军圣1,2;吴小伟3,4;王健4;杨宇1,2   

  1. 1.湖南大学汽车车身先进设计制造国家重点实验室,长沙,410082
    2.湖南大学装备服役质量保障湖南省重点实验室,长沙,410082
    3.中国航发湖南动力机械研究所直升机传动技术国家级重点实验室,株洲,412002
    4.中国航发湖南动力机械研究所航空发动机振动技术重点实验室,株洲,412002
  • 出版日期:2023-08-10 发布日期:2023-08-14
  • 通讯作者: 程军圣(通信作者),男,1968年生,教授、博士研究生导师。研究方向为复杂机电设备的动态感知与智能运维。E-mail:chengjunsheng@hnu.edu.cn。
  • 作者简介:李鑫,男,1993年生,博士研究生。研究方向为故障诊断、机器学习。
  • 基金资助:
    国家自然科学基金(51975193,51875183)

Early Weak Fault Detection Method of Gear Rotating Machinery by Combining SPCA and OCHD

LI Xin1,2;CHENG Junsheng1,2;WU Xiaowei3,4;WANG Jian4;YANG Yu1,2   

  1. 1.State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body,Hunan University,
    Changsha,410082
    2.Hunan Provincial Key Laboratory of Equipment Service Quality Assurance,Hunan University,
    Changsha,410082
    3.AECC Hunan Aviation Powerplant Research Institute,Zhuzhou,Hunan,412002
    4.AECC Key Laboratory of Aero-engine Vibration Technology,Zhuzhou,Hunan,412002
  • Online:2023-08-10 Published:2023-08-14

摘要: 针对旋转机械早期微弱故障难以被及时准确检测的问题,提出了一种基于辛主成分分析(SPCA)和单分类超圆盘(OCHD)的智能检测方法。首先,采用SPCA将振动信号映射到辛空间,并提取最能表征信号主要能量和有效信息的辛特征值作为旋转机械故障特征。然后,将超圆盘模型引入单分类领域,提出了OCHD模型,该模型采用超圆盘模型评估已知样本的类别分布,并通过寻找几何模型上距离原点最近的点来构建最优单分类超平面,从而实现早期微弱故障的智能检测。最后,采用辛辛那提大学轴承全寿命周期数据验证所提方法的有效性,实验结果表明:SPCA能够有效提取轴承的敏感故障信息,且OCHD的故障检测性能明显优于其他单分类模型。

关键词: 微弱故障检测, 旋转机械, 辛主成分分析, 超圆盘模型, 单分类超圆盘

Abstract: Aiming at the problems that early weak faults of rotating machinery were difficult to detect in time and accurately, an intelligent detection method was proposed based on SPCA and OCHD. Firstly, SPCA was used to map vibration signals to a symplectic space, and the symplectic eigenvalues which might best characterize the main energy and effective information of the signals were extracted as the fault features of rotating machinery. Then, the hyperdisk model was introduced into the one-class classification domain to propose the OCHD model. OCHD used the hyperdisk model to evaluate the class distribution of known samples, and the optimal one-class hyperplane was constructed by finding the closest points on the geometric model to the origin, so as to realize the intelligent detection of early weak faults. Finally, the effectiveness of the proposed method was verified by the bearing life cycle data from the university of Cincinnati. The experimental results show that SPCA may effectively extract the sensitive fault information of bearings, and the fault detection performance of OCHD is significantly better than that of other one-class models.

Key words: weak fault detection, rotating machinery, symplectic principal component analysis(SPCA), hyperdisk model, one-class hyperdisk(OCHD)

中图分类号: