[1]杨路航,李宝庆,王平,等.基于概率输出弹性凸包的滚动轴承故障诊断方法[J].中国机械工程,2021,32(1):40-46.
YANG Luhang, LI Baoqing, WANG Ping, et al. Fault Diagnosis Method of Rolling Bearings Based on Probability Output Flexible Convex Hull[J]. China Mechanical Engineering, 2021,32(1):40-46.
[2]余浩帅, 汤宝平, 张楷, 等.小样本下混合自注意力原型网络的风电齿轮箱故障诊断方法[J].中国机械工程, 2021, 32(20):2475-2481.
YU Haoshuai, TANG Baoping, ZHANG Kai, et al. Fault Diagnosis Method of Wind Turbine Gearboxes Mixed with Attention Prototype Networks under Small Samples[J]. China Mechanical Engineering, 2021,32(20):2475-2481.
[3]QIAO Z, LEI Y, LI N. Applications of Stochastic Resonance to Machinery Fault Detection:a Review and Tutorial[J]. Mechanical Systems and Signal Processing, 2019, 122:502-536.
[4]赵志宏, 李乐豪, 杨绍普, 等. 一种无监督的轴承健康指标及早期故障检测方法[J]. 中国机械工程, 2022, 33(10):1234-1243.
ZHAO Zhihong, LI Lehao, YANG Shaopu, et al. An Unsupervised Bearing Health Indicator and Early Fault Detection Method[J]. China Mechanical Engineering, 2022, 33(10):1234-1243.
[5]LEI M, MENG G, DONG G. Fault Detection for Vibration Signals on Rolling Bearings Based on the Symplectic Entropy Method[J]. Entropy, 2017, 19(11):607.
[6]CHENG J, YANG Y, LI X, et al. An Early Fault Diagnosis Method of Gear Based on Improved Symplectic Geometry Mode Decomposition[J]. Measurement, 2020, 151:107140.
[7]PAN H, YANG Y, LI X, et al. Symplectic Geometry Mode Decomposition and Its Application to Rotating Machinery Compound Fault Diagnosis[J]. Mechanical Systems and Signal Processing, 2019, 114:189-211.
[8]郑直,高崇一,宋金超,等.基于SGMD敏感参数和KFCMC的滚动轴承故障诊断方法[J].机床与液压,2020,48(11):189-193.
ZHENG Zhi, GAO Chongyi, SONG Jinchao, et al. Fault Diagnosis Method of Rolling Bearings Based on SGMD Sensitive Parameters and KFCMC[J]. Machine Tool & Hydraulics,2020,48(11):189-193.
[9]LI X, YANG Y, SHAO H, et al. Symplectic Weighted Sparse Support Matrix Machine for Gear Fault Diagnosis[J]. Measurement, 2021, 168:108392.
[10]LEI M, MENG G. Symplectic Principal Component Analysis:a New Method for Time Series Analysis[J]. Mathematical Problems in Engineering, 2011, 2011:793429.
[11]HEJAZI M, SINGH Y P. One-class Support Vector Machines Approach to Anomaly Detection[J]. Applied Artificial Intelligence, 2013, 27(5):351-366.
[12]ZHANG F, FAN H, WANG R, et al. Deep Dual Support Vector Data Description for Anomaly Detection on Attributed Networks[J]. International Journal of Intelligent Systems, 2022, 37(2):1509-1528.
[13]FERNNDEZ-FRANCOS D, FONTENLA-ROMERO, ALONSO-BETANZOS A. One-class Convex Hull-based Algorithm for Classification in Distributed Environments[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 50(2):386-396.
[14]FERNNDEZ-FRANCOS D, MARTNEZ-REGO D, FONTENLA-ROMERO O, et al. Automatic Bearing Fault Diagnosis Based on One-class ν-SVM[J]. Computers & Industrial Engineering, 2013, 64(1):357-365.
[15]SAARI J, STRMBERGSSON D, LUNDBERG J, et al. Detection and Identification of Windmill Bearing Faults Using a One-class Support Vector Machine (SVM)[J]. Measurement, 2019, 137:287-301.
[16]SHIN H J, EOM D H, KIM S S. One-class Support Vector Machines—an Application in Machine Fault Detection and Classification[J]. Computers & Industrial Engineering, 2005, 48(2):395-408.
[17]WANG Q, LIU X, WEI B, et al. Online Incipient Fault Detection Method Based on Improved 1 Trend Filtering and Support Vector Data Description[J]. IEEE Access, 2021, 9:30043-30059.
[18]ZENG M, YANG Y, LUO S, et al. One-class Classification Based on the Convex Hull for Bearing Fault Detection[J]. Mechanical Systems and Signal Processing, 2016, 81:274-293.
[19]NEZ I, JOVE E, CASTELEIRO-ROCA J L, et al. Hybrid Approximate Convex Hull One-class Classifier for an Industrial Plant[C]∥Computational Intelligence in Security for Information Systems Conference. Cham, 2019:282-292.
[20]YI J, WU L, ZHOU W, et al. ASparse Dimensionality Reduction Approach Based on False Nearest Neighbors for Nonlinear Fault Detection[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2019, 51(8):4980-4992.
[21]SONG X, ZHANG Y, GONG D, et al. FeatureSelection Using Bare-bones Particle Swarm Optimization with Mutual Information[J]. Pattern Recognition, 2021, 112:107804.
[22]INCE T, MALIK J, DEVECIOGLU O C, et al. EarlyBearing Fault Diagnosis of Rotating Machinery by 1d Self-organized Operational Neural Networks[J]. IEEE Access, 2021, 9:139260-139270.
|