中国机械工程 ›› 2023, Vol. 34 ›› Issue (15): 1856-1863.DOI: 10.3969/j.issn.1004-132X.2023.15.010

• 服务型制造 • 上一篇    下一篇

基于判别性特征提取和双重域对齐的轴承跨域故障诊断

董绍江;周存芳;陈里里;徐向阳   

  1. 重庆交通大学机电与车辆工程学院,重庆,400074
  • 出版日期:2023-08-10 发布日期:2023-08-15
  • 作者简介:董绍江,男,1982年生,教授、博士研究生导师。研究方向为旋转机械系统(轴承)状态分析和故障诊断、趋势预测、大数据挖掘。E-mail:dongshaojiang100@163.com。
  • 基金资助:
    国家自然科学基金(51775072);重庆市科技创新领军人才支持计划(CSTCCCXLJRC201920);重庆市高校创新研究群体项目(CXQT20019)

Cross-domain Fault Diagnosis of Bearings Based on Discriminant Feature Extraction and Dual-domain Alignment

DONG Shaojiang;ZHOU Cunfang;CHEN Lili;XU Xiangyang   

  1. School of Mechanical,Electrical and Vehicle Engineering,Chongqing Jiaotong University,
    Chongqing,400074
  • Online:2023-08-10 Published:2023-08-15

摘要: 针对不同工况下采集的滚动轴承振动数据特征分布不一致且噪声成分难以去除的问题,提出一种基于判别性特征提取和双重域对齐的深度迁移学习故障诊断方法。首先,将带标签的振动信号和未带标签的振动信号通过固定长度的数据分割方法制作成数据集;其次,为了减少实际工况中噪声信号的干扰,采用通道注意力机制SENet(squeeze-and-excitation networks)及判别损失项来辅助特征提取器提取具有区分度的特征;再次,为了解决数据特征分布不一致的问题,采用最大均值差异来对齐源域和目标域的全局域分布,并采用条件对抗方法来对齐两域的子领域分布,实现双重域对齐。最后,在两个公开变工况滚动轴承故障数据集上进行试验验证,结果表明,所提方法平均识别准确率达到98%以上,并将其与不同诊断方法进行了对比分析,证明了所提方法的有效性与优越性。

关键词: 滚动轴承, 故障诊断, 迁移学习, 判别性特征, 最大均值差异

Abstract:  A deep transfer learning method was proposed to address the challenge of inconsistent feature distributions and difficulties in removing noise components in vibration data collected under different operating conditions for rolling bearings. The method utilized a combination of discriminative feature extraction and dual-domain alignment. Firstly, the labeled vibration signals and unlabeled vibration signals were segmented into fixed-length data sets using a data segmentation method. To mitigate the interference of noise signals in practical operating conditions, a channel attention mechanism known as SENet was employed. Additionally, a discriminative loss term was incorporated to assist the feature extractor in extracting features that exhibit discriminative properties. To handle the issue of inconsistent data feature distributions, the MMD was utilized to align the global domain distributions between the source and target domains. Furthermore, conditional adversarial learning techniques were employed to align the sub-domain distributions, resulting in dual-domain alignment. Experimental validation was conducted on two publicly available rolling bearing fault datasets collected under different operating conditions. The results show that the proposed method achieves an average recognition accuracy of over 98%. Comparative analyses with different diagnostic methods further demonstrate the effectiveness and superiority of the proposed method. 

Key words: rolling bearing, fault diagnosis, transfer learning, discriminant feature, maximum mean discrepancy(MMD)

中图分类号: