[1]肖静. 波音描绘航空航天业可持续发展未来[J].中国民用航空,2021(10):58-59.
XIAO Jing. Boeing Depicts the Sustainable Development Future of the Aerospace Industry[J]. China Civil Aviation,2021(10):58-59.
[2]BOCK S, BOYSEN N. Integrated Real-time Control of Mixed-model Assembly Lines and Their Part Feeding Processes[J].Computers & Operations Research, 2021, 132:105344.
[3]李颖俐,李新宇,高亮. 混合流水车间调度问题研究综述[J]. 中国机械工程,2020,31(23):2798-2813.
LI Yingli, LI Xinyu, GAO Liang. Review on Hybrid Flow Shop Scheduling Problems[J]. China Mechanical Engineering, 2020,31(23):2798-2813.
[4]GIORGIO A, MAFFEI A, ONORI M, et al. Towards Online Reinforced Learning of Assembly Sequence Planning with Interactive Guidance Systems for Industry 4.0 Adaptive Manufacturing[J]. Journal of Manufacturing Systems, 2021, 60:22-34.
[5]RAUF M, GUAN Z, SARFRAZ S, et al. A Smart Algorithm for Multi-criteria Optimization of Model Sequencing Problem in Assembly Lines[J]. Robotics and Computer-Integrated Manufacturing, 2020, 61:101844.
[6]AKYOL S D, BAYKASOGˇLU A. A Multiple-rule Based Constructive Randomized Search Algorithm for Solving Assembly Line Worker Assignment and Balancing Problem[J]. Journal of Intelligent Manufacturing, 2019, 30(2):557-573.
[7]DEFERSHA F M, MOHEBALIZADEHGASHTI F. Simultaneous Balancing, Sequencing, and Workstation Planning for a Mixed Model Manual Assembly Line Using Hybrid Genetic Algorithm[J]. Computers & Industrial Engineering,2018,119:370-387.
[8]ZHANG B, XU L, ZHANG J. A Multi-objective Cellular Genetic Algorithm for Energy-oriented Balancing and Sequencing Problem of Mixed-model Assembly Line[J]. Journal of Cleaner Production, 2019, 244:118845.
[9]贺俊杰,张洁,张朋,等. 基于长短期记忆近端策略优化强化学习的等效并行机在线调度方法[J]. 中国机械工程,2022,33(3):329-338.
HE Junjie, ZHANG Jie, ZHANG Peng, et al. Related Parallel Machine Online Scheduling Method Based on LSTM-PPO Reinforcement Learning[J]. China Mechanical Engineering, 2022, 33(3):329-338.
[10]WANG H, SARKER B R, LI J, et al. Adaptive Scheduling for Assembly Job Shop with Uncertain Assembly Times Based on Dual Q-learning[J]. International Journal of Production Research, 2021, 59(19):5867-5883.
[11]TORTORELLI A, IMRAN M, DELLI PRISCOLI F, et al. A Parallel Deep Reinforcement Learning Framework for Controlling Industrial Assembly Lines[J]. Electronics, 2022, 11(4):539-548.
[12]OSTERMEIER F F. On the Trade-offs between Scheduling Objectives for Unpaced Mixed-model Assembly Lines[J]. International Journal of Production Research, 2022, 60(3):866-893.
[13]LV Y, ZHANG J. A Genetic Regulatory Network Based Method for Multi-objective Sequencing Problem in Mixed-model Assembly Lines[J]. Mathematical Biosciences and Engineering, 2019, 16(3):1228-1243.
[14]张凯,毕利,焦小刚. 集成强化学习算法的柔性作业车间调度问题研究[J].中国机械工程,2023,34(2):201-207.
ZHANG Kai,BI Li,JIAO Xiaogang. Research on Flexible Job-shop Scheduling Problems with Integrated Reinforcement Learning Algorithm[J]. China Mechanical Engineering,2023,34(2):201-207.
[15]于鑫,吴文峻,罗杰,等. 面向群体共识机制的逆强化学习辨识方法[J].中国科学:技术科学,2023,53(2):258-267.
YU Xin, WU Wenjun, LUO Jie,et al. Identification Method for Collective Consensus Mechanism Based on Inverse Reinforcement Learning[J]. Sci. Sin. Tech., 2023, 53(2):258-267.
[16]PARK J, CHUN J, KIM S H, et al. Learning to Schedule Job-shop Problems:Representation and Policy Learning Using Graph Neural Network and Reinforcement Learning[J]. International Journal of Production Research,2021,59(11):3360-3377.
[17]BAUTISTA J, CANO A. Solving Mixed Model Sequencing Problem in Assembly Lines with Serial Workstations with Work Overload Minimisation and Interruption Rules[J]. European Journal of Operational Research,2011,210(3):495-513.
[18]周亚勤,杨长祺,吕佑龙,等. 双资源约束的航天结构件车间生产调度方法[J]. 机械工程学报,2018,54(9):55-63.
ZHOU Yaqin, YANG Changqi, LYU Youlong, et al. Scheduling the Production of Aerospace Structural Parts with Dual Resource Constraints[J]. Journal of Mechanical Engineering, 2018, 54(9):55-63.
|