中国机械工程 ›› 2023, Vol. 34 ›› Issue (21): 2607-2614.DOI: 10.3969/j.issn.1004-132X.2023.21.010

• 智能制造 • 上一篇    下一篇

一种基于动态残差的自适应鲁棒无迹卡尔曼滤波器定位算法

许万1;程兆1;夏瑞东1;陈汉成2   

  1. 1.湖北工业大学机械工程学院,武汉,430072
    2.深圳海外装饰工程有限公司,深圳,518031
  • 出版日期:2023-11-10 发布日期:2023-11-29
  • 通讯作者: 陈汉成(通信作者),男,1977年生,高级工程师。E-mail:380028295@qq.com。
  • 作者简介:许万,男,1979年生,教授、博士研究生导师。研究方向为移动机器人、多轴运动控制。发表论文30余篇。E-mail:xuwan@mail.hbut.edu.cn。
  • 基金资助:
    湖北省重点研发专项(2023BEB031);住建部科技项目(2022GKG078)

An Adaptive Robust Unscented Kalman Filter Localization Algorithm Based on Dynamic Residual

XU Wan1;CHENG Zhao1;XIA Ruidong1;CHEN Hancheng2   

  1. 1.School of Mechanical Engineering,Hubei University of Technology,Wuhan,430072
    2.Shenzhen Overseas Decoration Engineering Co.,Ltd.,Shenzhen,Guangdong,518031

  • Online:2023-11-10 Published:2023-11-29

摘要: 针对标准无迹卡尔曼滤波(UKF)定位算法无法满足移动机器人在不平整地面运动时高精度定位要求的问题,结合抗差估计理论,提出了一种自适应鲁棒无迹卡尔曼滤波器(ARUKF)定位算法。ARUKF根据动态残差对UKF的预测值进行抗差自适应调整,减小了外部干扰对系统预测值的影响,提高了系统的精度与鲁棒性,通过减少采样过程的运算量加快了运算,并提高了系统实时性。仿真和现场测试结果表明,相较于UKF算法和基于Sage-Husa的改进UKF算法,ARUKF算法对不平整地面产生的扰动能更快收敛,具有更加优异的精度、鲁棒性和实时性,平均距离误差小于2 mm,平均角度误差小于0.016 rad,可以满足更苛刻的建筑施工现场放线要求。

关键词: 精准定位, 抗差估计, 动态残差, 自适应鲁棒无迹卡尔曼滤波器, 移动机器人

Abstract:  Aiming at the problems that the standard unscented Kalman filter(UKF) localization algorithm could not meet the high-precision localization requirements of mobile robots when moved on uneven ground, an ARUKF localization algorithm was proposed based on robust estimation theory. The ARUKF adaptively adjusted the predicted value of UKF according to the dynamic residual, reduced the influences of external interference on the predicted values of the systems, improved the accuracy and robustness of the system, speeded up the operation by reducing the computational complexity of the sampling processes, and improved the real-time performance of the system. The simulation and field test results show that the ARUKF algorithm may converge faster for the disturbance generated by uneven ground, and have better accuracy, robustness, and real-time performance, compared with the UKF algorithm and the improved UKF algorithm based on Sage-Husa. The average distance error is less than 2 mm, and the average angle error is less than 0.016 rad, which may meet more stringent requirements of the construction site. 

Key words:  , precise localization, robust estimation, dynamic residual, adaptive robust unscented Kalman filter(ARUKF), mobile robot

中图分类号: