[1]李静,刘坚,李蓉.方差监测的自适应累积和车身质量控制图研究[J].中国机械工程,2013,24(14):1979-1983.
LI Jing, LIU Jian, LI Rong. Research on Adaptive Accumulation of Variance Monitoring and Car Body Quality Control Chart[J]. China Mechanical Engineering,2013,24(14):1979-1983.
[2]WANG R, EDGAR T F, BALDEA M, et al. A Geometric Method for Batch Data Visualization, Process Monitoring and Fault Detection[J]. Journal of Process Control, 2018, 67:197-205.[3]赵春晖,余万科,髙福荣.非平稳间歇过程数据解析与状态监控—回顾与展望[J].自动化学报,2020, 46(10):2072-2091.
ZHAO Chunhui, YU Wanke, GAO Furong. Data Analytics and Condition Monitoring Methods for Non-stationary Batch Processes-current Status and Future[J]. Acta Automatica Sinica, 2020, 46(10) :2072-2091.
[4]赵春华,汪成康,华露,等.基于融合特征约减和支持向量机的控制图模式识别[J].中国机械工程, 2017,28(8):930-935.
ZHAO Chunhua, WANG Chengkang, HUA Lu, et al. Control Chart Pattern Recognition Based on Fusion Feature Reduction and Support Vector Machine[J]. China Mechanical Engineering, 2017,28(8):930-935.
[5]张建,胡小锋,张亚辉. 基于自步学习的刀具加工过程监测数据异常检测方法[J].上海交通大学学报, 2023, 57(10):1346-1354.
ZHANG Jian, HU Xiaofeng, ZHANG Yanhui. Abnormal Detection Method of Tool Machining Monitoring Dat a Based on Self-paced Learning[J]. Journal of Shanghai Jiao Tong University, 2023, 57(10):1346-1354.
[6]黄健,杨旭. 基于在线加权慢特征分析的故障检测算法[J]. 上海交通大学学报, 2020, 54(11):1142-1150.
HUANG Jian, YANG Xu. Online Weighted Slow Feature Analysis Based Fault Detection Algorithm[J]. Journal of Shanghai Jiao Tong University, 2020, 54(11):1142-1150.
[7]UEDA R M, AGOSTINO I, SOUZA A M. Analysis and Perspectives on Multivariate Statistical Process Control Charts Used in the Industrial Sector:a Systematic Literature Review[J]. Management and Production Engineering Review,2022,13(2):48-60.
[8]SHANG J, ZHOU D, CHEN M, et al. Incipient Sensor Fault Diagnosis in Multimode Processes Using Conditionally Independent Bayesian Learning Based Recursive Transformed Component Statistical Analysis[J]. Journal of Process Control, 2019, 77:7-19.
[9]YAN Dandan, ZHANG Shuai, JUNG U K. A Variable-selection Control Chart via Penalized Likelihood and Gaussian Mixture Model for Multimodal and High-dimensional Processes[J]. Quality and Reliability Engineering International,2019, 35(4):1263-1275.
[10]JIANG Q, YAN X. Multimode Process Monitoring Using Variational Bayesian Inference and Canonical Correlation Analysis[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(4):1814-1824.
[11]MA H, YI H, SHI H. A Novel Local Neighborhood Standardization Strategy and Its Application in Fault Detection of Multimode Processes[J]. Chemometrics and Intelligent Laboratory Systems, 2012, 118:287-300.
[12]LYU Feiya, WEN Chenglin, LIU Meiqin. Representation Learning Based Adaptive Multimode Process Monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 181:95-104.
[13]LI Shuai, ZHOU Xiaofeng, SHI Haibo. Multimode Processes Monitoring Based on Hierarchical Mode Division and Subspace Decomposition[J]. The Canadian Journal of Chemical Engineering, 2018, 96:2420- 2430.
[14]郭金玉,刘玉超,李元. 基于概率密度PCA的多模态过程故障检测[J].计算机应用研究, 2019, 36(5):1396-1399.
GUO Jinyu, LIU Yuchao, LI Yuan. PCA Based on Probability Density for Fault Detection of Multimodal Processes[J]. Application Research of Computers,2019, 36(5):1396-1399.
[15]CHEN Yushan, LIN Yuan, ZHENG Tianyu. AnImproved JITL Method for Soft Sensing of Multimodal Industrial Processes for Search Efficiency[J]. Journal of Physics:Conference Series, 2021, 1952:022036.
[16]CAO Yue, MAGBOOL J N, HUANG Biao, et al. Multimodal Process Monitoring Based on Variational Bayesian PCA and Kullback-Leibler Divergence between Mixture Models[J]. Chemometrics and Intelligent Laboratory Systems,2021, 210:104230.
[17]QUINONES-GRUEIRO M, PRIETO-MORENO A, VERDE C, et al. Data-driven Monitoring of Multimode Continuous Processes :a Review[J]. Chemometrics and Intelligent Laboratory Systems,2019,189:56-71.
[18]SAMMAKNEJAD N, ZHAO Y, HUANG B. A Review of the Expectation Maximization Algorithm in Data-driven Process Identification[J]. Journal of Process Control, 2019, 73:123-136.
[19]JI H, HUANG K, ZHOU D. Incipient Sensor Fault Isolation Based on Augmented Mahalanobis Distance[J]. Control Engineering Practice, 2019, 86:144-154.
[20]JIANG Qingchao, YAN Xuefeng. Multimode Process Monitoring Using Variational Bayesian Inference and Canonical Correlation Analysis[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(4):1814-1824.
[21]CHEN Shutian, JIANG Qingchao, YAN Xuefeng. Multimodal Process Monitoring Based on Transition-constrained Gaussian Mixture Model[J]. Chinese Journal of Chemical Engineering, 2020, 28:3070-3078.
[22]CAO Yue, MAGBOOL J N,HUANG Biao, et al. No-delay Multimodal Process Monitoring Using Kullback-Leibler Divergence-based Statisticsin Probabilistic Mixture Models[J]. IEEE Transactions on Automation Science and Engineering, 2022, 20(1):167-178.
[23]LI J, CHEN S X. Two Sample Tests for High-dimensional Covariance Matrices[J]. The Annals of Statistics, 2012, 40(2):908-940.
[24]CAI T, LIU W, XIA Y. Two-sample Covariance Matrix Testing and Support Recovery in High-Dimensional and Sparse Settings[J]. Journal of the American Statistical Association, 2013, 108(501):265-277.
[25]ZHU L, LEI J, DEVLIN B, ROEDER K. Testing High-dimensional Covariance Matrices, with Application to Detecting Schizophrenia Risk Genes[J]. The Annals of Applied Statistics, 2017, 11(3):1810-1831.
[26]KIM J, ABDELLA G M, KIM S, et al. Control Charts for Variability Monitoring in High-Dimensional Processes[J]. Computers & Industrial Engineering, 2019, 130:309-316.
[27]ALFARO J L, ORTEGA J F. A New Multivariate Variability Control Chart Based on a Covariance Matrix Combination[J]. Applied Stochastic Models in Business and Industry, 2019, 35(3):823-836.
[28]NING Xiu, LI Pingke. A Simulation Comparison of Some Distance-based EWMA Control Charts for Monitoring the Covariance Matrix with Individual Observations[J]. Quality and Reliability Engineering International, 2020:36(1):50-67.
[29]EBADI M, CHENOURI S, LIN DKJ, STEINER S H. Statistical Monitoring of the Covariance Matrix in Multivariate Processes:a Literature Review[J]. Journal of Quality Technology, 2022, 54(3):269-289.
[30]WANG Yang, WAN Yiming, ZHANG Hong, et al. Robust Decomposition of Kernel Function-based Nonlinear Robust Multimode Process Monitoring[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72:3511711.
[31]YANG Guangren, LIU Yiming, PAN Guangming. Weighted Covariance Matrix Estimation[J]. Computational Statistics & Data Analysis, 2019, 139:82-98.
|