[1]李克强, 罗禹贡, 陈慧, 等. 先进电动汽车状态估计与辨识[M]. 北京:机械工业出版社, 2019.
LI Keqiang, LUO Yugong, CHEN Hui, et al. State Estimation and Identification of Advanced Electric Vehicle[M]. Beijing:China Machine Press, 2019.
[2]SU C. Integrated Experimental Methods and Machine Learning for Tire Wear Prediction[D]. Blacksburg:Virginia Polytechnic Institute and State University, 2019.
[3]DA SILVA M M, CUNHA R H, NETO A C. A Simplified Model for Evaluating Tire Wear during Conceptual Design[J]. International Journal of Automotive Technology, 2012, 13(6):915-922.
[4]HUANG H, CHIU Y J, JIN X. Numerical Calculation of Irregular Tire Wear Caused by Tread Self-excited Vibration and Sensitivity Analysis[J]. Journal of Mechanical Science and Technology, 2013, 27(7):1923-1931.
[5]CHEN X, XU N, GUO K. Tire Wear Estimation Based on Nonlinear Lateral Dynamic of Multi-axle Steering Vehicle[J]. International Journal of Automotive Technology, 2018, 19(1):63-75.
[6]王国林, 王晨, 张建, 等.基于有限元分析的轮胎磨损性能优化[J].汽车工程,2009,31(9):867-870.
WANG Guolin, WANG Chen, ZHANG Jian, et al. Tire Wear Performance Optimization Based on Finite Element Analysis[J]. Automotive Engineering, 2009,31(9):867-870.
[7]WU J, ZHANG C, WANG Y, et al. Wear Predicted Model of Tread Rubber Based on Experimental and Numerical Method[J]. Experimental Techniques, 2018, 42(2):191-198.
[8]CHO J R, CHOI J H, KIM Y S. Abrasive wear amount estimate for 3D Patterned Tire Utilizing Frictional Dynamic Rolling Analysis[J]. Tribology International, 2011, 44(7/8):850-858.
[9]MIN Y, XIAO B, DANG J, et al. Real Time Detection System for Rail Surface Defects Based on Machine Vision[J]. EURASIP Journal on Image and Video Processing, 2018, 2018(1):1-11.
[10]PARK H J, LEE Y W, KIM B G. Efficient Tire Wear and Defect Detection Algorithm Based on Deep Learning[J]. Journal of Korea Multimedia Society, 2021, 24(8):1026-1034.
[11]RAUSCH J, JARAMILLO-VOGEL D, PERSEGUERS S, et al. Automated Identification and Quantification of Tire Wear Particles(TWP) in Airborne Dust:SEM/EDX Single Particle Analysis Coupled to a Machine Learning Classifier[J]. Science of The Total Environment, 2022, 803:149832.
[12]LI B, QUAN Z, BEI S, et al. An Estimation Algorithm for Tire Wear Using Intelligent Tire Concept[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2021, 235(10/11):2712-2725.
[13]CHANG W H, JUANG R T, HUANG M H, et al. Estimation of Tire Mileage and Wear Using Measurement Data[J]. Electronics, 2021, 10(20):2531.
[14]KIM Y J, KIM H J, HAN J Y, et al. Classification of Tire Tread Wear Using Accelerometer Signals through an Artificial Neural Network[J]. Journal of the Korean Society of Industry Convergence, 2020, 23(2):163-171.
[15]NISHIYAMA K. Tire Wear Estimation Method:EP19869327[P]. 2022-07-20.
[16]NISHIYAMA K, ISHIZUKI M, MORI T. Strain Measurement-based Self-diagnosis of Tire Wear Conditions in Slow Driving Vehicles[C]∥2022 IEEE Intelligent Vehicles Symposium(Ⅳ). Aachen, 2022:159-166.
[17]ZHANG H, ZHANG S, ZHANG Y, et al. Abrasion Status Prediction with BP Neural Network Based on an Intelligent Tire System[C]∥2020 4th CAA International Conference on Vehicular Control and Intelligence(CVCI). Hangzhou, 2020:619-622.
[18]陶亮, 张大山, 张小龙, 等.智能轮胎开发平台专用轮辋总成设计与试验[J].中国机械工程,2023,34(9):1111-1119.
TAO Liang, ZHANG Dashan, ZHANG Xiaolong, et al. Design and Experiment of Special Rim Assembly for Intelligent Tire Development Platform[J]. China Mechanical Engineering , 2023,34(9):1111-1119.
[19]王锐佳. 基于ABAQUS 205/55R16轮胎磨损仿真研究[D].青岛:青岛科技大学,2022.
WANG Ruijia. Research of 205/55R16 Tire Wear Simulation Based on ABAQUS[D]. Qingdao:Qingdao University of Science & Technology,2022.
[20]KIM M T, LEE H J, CHOI S B, et al. Tire Wear Measurement Device Using Acceleration Peak Value of Tire and Tire Wear Measurement Method Using Same:US2021101416A1[P]. 2021-04-08.
[21]LEHMANN J, LANGE B. Method for Determining the Depth of Tread of a Vehicle Tire with a Tire Module Arranged on the Inner Side of the Tire:US9764603B2[P]. 2017-09-19.
[22]CHOI J H, KWON J W. Method and Apparatus for Predicting Tire Wear Using Machine Learning:DE102021126014A1[P]. 2022-06-23.
[23]王梦鹤. 锂离子电池寿命预测的方法研究[D].郑州:郑州大学, 2022.
WANG Menghe. Study on Life Prediction Method of Lithium Ion Battery[D]. Zhengzhou:Zhengzhou University,2022.
[24]DOGRU N, SUBASI A. Traffic Accident Detection Using Random Forest Classifier[C]∥2018 15th Learning and Technology Conference(L&T). Jeddah, 2018:40-45.
|