中国机械工程 ›› 2024, Vol. 35 ›› Issue (01): 2-26.DOI: 10.3969/j.issn.1004-132X.2024.01.001
黄云;黄建超;肖贵坚;刘帅;林瓯川;刘振扬
出版日期:
2024-01-25
发布日期:
2024-02-27
通讯作者:
肖贵坚(通信作者),男,1986年生,副教授、博士研究生导师。研究方向为微纳结构激光砂带协同加工创成、多能场协同材料去除与刀具磨损。E-main:xiaoguijian@cqu.edu.cn。
作者简介:
黄云 ,男,1962年生,教授、博士研究生导师。研究方向为智能制造装备、抗疲劳制造技术。E-main:yunhuang@samhida.com。
基金资助:
HUANG Yun;HUANG Jianchao;XIAO Guijian;LIU Shuai;LIN Ouchuan;LIU Zhenyang
Online:
2024-01-25
Published:
2024-02-27
摘要: 当前制备的超疏水表面耐磨性能普遍较差,因而其在各领域的应用受到限制。研究表明微纳结构和低表面能是实现功能表面超疏水性能的关键因素,因此,首先基于超疏水表面作用机制,对超疏水表面织构进行了归纳,旨在通过优化表面织构来解决微纳结构易磨损难题;然后对超疏水表面加工技术进行了梳理总结,从成本和效率两个方面分析了降低表面能的措施,为拓展超疏水表面加工体系提供思路;进而详细总结了超疏水表面耐磨性的分析手段,并阐述了提高超疏水表面耐磨性的方法;最后,展望了耐磨性超疏水表面的未来发展前景,以期推动超疏水表面在工程中的大规模应用。
中图分类号:
黄云, 黄建超, 肖贵坚, 刘帅, 林瓯川, 刘振扬. 超疏水表面加工技术及耐磨性能研究进展[J]. 中国机械工程, 2024, 35(01): 2-26.
HUANG Yun, HUANG Jianchao, XIAO Guijian, LIU Shuai, LIN Ouchuan, LIU Zhenyang. Research Progresses of Superhydrophobic Surface Processing Technology and Abrasion Resistance[J]. China Mechanical Engineering, 2024, 35(01): 2-26.
[1]WEI J, ZHANG J, CAO X,et al. Durable Superhydrophobic Coatings for Prevention of Rain Attenuation of 5G/Weather Radomes[J]. Nature Communications, 2023, 14(1):2862. [2]LYU T, CHENG Z, ZHANG D,et al. Superhydrophobic Surface with Shape Memory Micro/Nanostructure and Its Application in Rewritable Chip for Droplet Storage[J]. ACS Nano, 2016, 10(10):9379-9386. [3]WANG X, LIN D, ZHOU Y,et al. Multistimuli-responsive Hydroplaning Superhydrophobic Microrobots with Programmable Motion and Multifunctional Applications[J]. ACS Nano, 2022, 16(9):14895-14906. [4]SHI C, WU Z, LI Y,et al. Superhydrophobic/Superhydrophilic Janus Evaporator for Extreme High Salt-resistance Solar Desalination by an Integrated 3D Printing Method[J]. ACS Applied Materials & Interfaces, 2023, 15(19):23971-23979. [5]WU L, ZHOU C, ZHANG B,et al. Construction of Biomimetic Natural Wood Hierarchical Porous-structure Bioceramic with Micro/Nanowhisker Coating to Modulate Cellular Behavior and Osteoinductive Activity[J]. ACS Applied Materials & Interfaces, 2020, 12(43):48395-48407. [6]LU J Z, XUE K N, LU H F,et al. Laser Shock Wave-induced Wear Property Improvement and Formation Mechanism of Laser Cladding Ni25 Coating on H13 Tool Steel[J]. Journal of Materials Processing Technology, 2021, 296:117202. [7]MENG Y, DENG J, GE D,et al. Surface Textures Fabricated by Laser and Ultrasonic Rolling for Improving Tribological Properties of TiAlSiN Coatings[J]. Tribology International, 2021, 164:107248. [8]FENG X, FAN D, TIAN G,et al. Coupled Bionic Drag-reducing Surface Covered by Conical Protrusions and Elastic Layer Inspired from Pufferfish Skin[J]. ACS Applied Materials & Interfaces, 2022, 14(28):32747-32760. [9]BUHL S, SCHMIDT K, SAPPOK D,et al. Surface Structuring of Case Hardened Chain Pins by Cold-sprayed Microparticles to Modify Friction and Wear Properties[J]. Particuology, 2015, 21:32-40. [10]APTE G, HIRTZ M, NGUYEN T H.Fluid FM-based Fabrication of Nanopatterns:Promising Surfaces for Platelet Storage Application[J]. ACS Applied Materials & Interfaces, 2022, 14(21):24133-24143. [11]HAO X, SUN P, XIAO S,et al. Tribological Performance of Surface with Different Wettability under Ball-on-disc Test[J]. Applied Surface Science, 2020, 501:144228. [12]ZHOU M, ZHANG L, ZHONG L,et al. Robust Photothermal Icephobic Surface with Mechanical Durability of Multi-bioinspired Structures[J]. Advanced Materials, 2023:2305322. [13]WANG N, WANG Q, XU S,et al. Robust Superhydrophobic Wood Surfaces with Mechanical Durability[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 608 :125624. [14]LI X, YAN J, YU T,et al. Versatile Nonfluorinated Superhydrophobic Coating with Self-cleaning, Anti-fouling, Anti-corrosion and Mechanical Stability[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 642:128701. [15]FAN P, PAN R, ZHONG M. Ultrafast Laser Enabling Hierarchical Structures for Versatile Superhydrophobicity with Enhanced Cassie-baxter Stability and Durability[J]. Langmuir, 2019, 35(51):16693-16711. [16]XIN L, LI H, GAO J,et al. Large-scale Fabrication of Decoupling Coatings with Promising Robustness and Superhydrophobicity for Antifouling, Drag Reduction, and Organic Photodegradation[J]. Friction, 2023, 11(5):716-736. [17]JIANG J, SHEN Y, WANG Z,et al. Design and Fabrication Superhydrophobic Surface with Enhanced Mechanical Durability:Interface Bonding Effects Regulated by an Introduced Transition Oxide Layer[J]. Applied Surface Science, 2022, 592:153199. [18]ZHAO F, ZHAN F, WANG L. Hybrid Topography of Lotus Leaf under Hydrostatic/Hydrodynamic Pressure[J]. Advanced Materials Interfaces, 2022, 10(4):2202044. [19]SAMANTA A, HUANG W, BELL M,et al. Large-area Surface Wettability Patterning of Metal Alloys via a Maskless Laser-assisted Functionalization Method[J]. Applied Surface Science, 2021, 568(42):150788. [20]WANG X, YU H, YANG T,et al. Density Regulation and Localization of Cell Clusters by Self-assembled Femtosecond-laser-fabricated Micropillar Arrays[J]. ACS Applied Materials & Interfaces,2021, 13(49):58261-58269. [21]陈逢军,向望,胡天.静电气喷磁响应复合微结构功能表面制备研究[J]. 机械工程学报, 2022, 58(9):298-306. CHEN Fengjun, XIANG Wang, HU Tian. Fabrication of Magnetic Responsive Surface with Multiscale Microstructures by Electrostatic Air Spray Deposition[J]. Journal of Mechanical Engineering, 2022, 58(9):298-306. [22]KIM M, YOO S, JEONG H E,et al. Fabrication of Salvinia-inspired Surfaces for Hydrodynamic Drag Reduction by Capillary-force-induced Clustering[J]. Nature Communications, 2022, 13(1):5181. [23]WANG L, YIN K, DENG Q,et al. Wetting Ridge-guided Directional Water Self-transport[J]. Advanced Science, 2022, 9(34):e2204891. [24]XIN G, WU C, LIU W,et al. Anti-corrosion Superhydrophobic Surfaces of Al Alloy Based on Micro-protrusion Array Structure Fabricated by Laser Direct Writing[J]. Journal of Alloys and Compounds, 2021, 881:160649. [25]陈炳彬,张征,鲁聪达,等.复合材料层合结构在防覆冰/除冰系统中的应用[J]. 中国机械工程, 2019, 30(7):771-776. CHEN Bingbin;ZHANG Zheng;LU Congda, et al.CHAI Guozhong. Applications of Composite Laminated Structures in Anti-icing and De-icing Systems[J]. China Mechanical Engineering, 2019, 30(7):771-776. [26]HOU Y, ZHAN F, FAN W,et al. Dynamic Anti-icing Performance of Flexible Hybrid Superhydropohobic Surfaces[J]. ACS Applied Materials & Interfaces, 2023, 15(34):41162-41169. [27]LAN L, DI Y L, WANG H D,et al. One-step Modification Method of a Superhydrophobic Surface for Excellent Antibacterial Capability[J]. Friction, 2022, 11(4):524-537. [28]LIU Z, LIAN Z, CAI Q,et al. A Scalable Method toward Robust Underwater Superoleophobic Surfaces with Microstructure Arrays on 304 Stainless Steel Substrates[J]. Applied Surface Science, 2023,630(1/3):157465. [29]LI R, LI Y, JIA X,et al. In-situ Grown of NiAl-LDHs for Self-healing Fabric with Flame-retardant, UV-protection and Antifouling Performance[J]. Ceramics International, 2023, 49(9):14635-14644. [30]ZHANG W, WANG D, SUN Z,et al. Robust Superhydrophobicity:Mechanisms and Strategies[J]. Chemical Society Reviews, 2021, 50(6):4031-4061. [31]FENG Y, SUN J, XU L,et al. Angle-independent Structurally Colored Materials with Superhydrophobicity and Self-healing Capability[J]. Advanced Materials Interfaces, 2021, 8(7), 2001950. [32]BARATI DARBAND G, ALIOFKHAZRAEI M, KHORSAND S,et al. Science and Engineering of Superhydrophobic Surfaces:Review of Corrosion Resistance, Chemical and Mechanical Stability[J]. Arabian Journal of Chemistry, 2020, 13(1):1763-1802. [33]LIU T L, KIM C J. Repellent Surfaces. Turning a Surface Superrepellent Even to Completely Wetting Liquids[J]. Science, 2014, 346(6213):1096-1100. [34]XU L, YANG L, YANG S,et al. Earthworm-inspired Ultradurable Superhydrophobic Fabrics from Adaptive Wrinkled Skin[J]. ACS Applied Materials & Interfaces, 2021, 13(5):6758-6766. [35]SUN P, JIN Y, YIN Y,et al. Achieving Extreme Pressure Resistance to Liquids on a Super-omniphobic Surface with Armored Reentrants[J]. Small Methods, 2023:2201602. [36]王立新,张硕研,闫世兴,等.猪笼草滑移区微纳复合结构液滴浸润程度的数值模拟[J]. 机械工程学报, 2022, 58(3):203-212. WANG Lixin, ZHANG Shuoyan, YAN Shixing, et al. Numerical Simulation of Droplet Infiltration of Micro-nano Structure in Nepenthes Slippery Zone[J]. Journal of Mechanical Engineering, 2022, 58(3):203-212. [37]LI Y, CUI Z, LI G,et al. Directional and Adaptive Oil Self-transport on a Multi-bioinspired Grooved Conical Spine[J]. Advanced Functional Materials, 2022, 32(27):2201035. [38]BARTHLOTT W, NEINHUIS C. Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces[J]. Planta, 1997, 202:1-8. [39]FENG L, LI S, LI Y,et al. Super-hydrophobic Surfaces:from Natural to Artificial[J]. Advanced Materials, 2002, 14(24):1857-1860. [40]ZHANG H, GAN J, WU Y,et al. Biomimetic High Water Adhesion Superhydrophobic Surface via UV Nanoimprint Lithography[J]. Applied Surface Science, 2023, 633:157610. [41]YANG L, SHEN X, YANG Q,et al. Fabrication of Biomimetic Anisotropic Super-hydrophobic Surface with Rice Leaf-like Structures by Femtosecond Laser[J]. Optical Materials, 2021, 112:110740. [42]LIU R, CHI Z, CAO L,et al. Fabrication of Biomimetic Superhydrophobic and Anti-icing Ti6Al4V Alloy Surfaces by Direct Laser Interference Lithography and Hydrothermal Treatment[J]. Applied Surface Science, 2020, 534: 147576. [43]HAN Z, WANG Z, LI B,et al. Flexible Self-cleaning Broadband Antireflective Film Inspired by the Transparent Cicada Wings[J]. ACS Applied Materials & Interfaces, 2019, 11(18):17019-17027. [44]WU W, WANG J, LIU Q,et al. Electrochemical Polishing Assisted Selective Laser Melting of Biomimetic Superhydrophobic Metallic Parts[J]. Applied Surface Science, 2022, 596:153601. [45]WANG Y, ZHANG Z, XU J,et al. One-step Method Using Laser for Large-scale Preparation of Bionic Superhydrophobic & Drag-reducing Fish-scale Surface[J]. Surface and Coatings Technology, 2021, 409:126801. [46]WOOD M J, BROCK G, DEBRAY J,et al. Robust Anti-icing Surfaces Based on Dual Functionality Horizontal Line Microstructurally-induced Ice Shedding with Superimposed Nanostructurally-enhanced Water Shedding[J]. ACS Applied Materials & Interfaces, 2022,14(41):47310-47321. [47]ZHANG H, BU X, LI W,et al. A Skin-inspired Design Integrating Mechano-chemical-thermal Robustness into Superhydrophobic Coatings[J]. Advanced Materials, 2022, 34(31):e2203792. [48]BABAN N S, OROZALIEV A, KIRCHHOF S,et al. Biomimetic Fracture Model of Lizard Tail Autotomy[J]. Science, 2022, 375(6582):770-774. [49]连峰,王增勇,张会臣.双疏铝合金表面的水/油润滑摩擦学性能[J]. 机械工程学报, 2016, 52(11):115-120. LIAN Feng, WANG Zengyong, ZHANG Hui-cheng. Tribological Performance of Amphiphobic Aluminum Alloy Surface under Water/Oil Lubrication[J]. Journal of Mechanical Engineering, 2016, 52(11):115-120. [50]WANG Y, ZHANG M, YIN J,et al. Effect of Ultrasonic Vibration-assisted Laser Treatment on Surface Roughness and Wettability of Aluminum[J]. Optics & Laser Technology, 2022, 150:107969. [51]FAN L, YAN Q, QIAN Q,et al. Laser-induced Fast Assembly of Wettability-finely-tunable Superhydrophobic Surfaces for Lossless Droplet Transfer[J]. ACS Applied Materials & Interfaces, 2022, 14(31):36246-36257. [52]SUN Y, ZHENG Y, WANG R,et al. 3D Micro-nanostructure Based Waterproof Triboelectric Nanogenerator as an Outdoor Adventure Power Source[J]. Nano Energy, 2022, 100:107506. [53]LIU S, XIAO G, LIN O,et al. Laser Belt Processed Micropillars with Microporous Structure and Nanoparticles to Control the Surface Wettability of Superhydrophobic Inconel 718 Alloy[J]. Surfaces and Interfaces, 2023, 42:103429. [54]LONG J, CHU P, LI Y,et al. Dual-scale Porous/Grooved Microstructures Prepared by Nanosecond Laser Surface Texturing for High-performance Vapor Chambers[J]. Journal of Manufacturing Processes, 2022, 73:914-923. [55]XU Y, CHEN L, CHEN J,et al. Flexible and Transparent Pressure/Temperature Sensors Based on Ionogels with Bioinspired Interlocked Microstructures[J]. ACS Applied Materials & Interfaces, 2022, 14(1):2122-2131. [56]ZHENG J, YANG B, WANG H,et al. Temperature-responsive, Femtosecond Laser-ablated Ceramic Surfaces with Switchable Wettability for On-demand Droplet Transfer[J]. ACS Applied Materials & Interfaces, 2023, 15(10):13740-13752. [57]WANG L, TIAN Z, JIANG G,et al. Spontaneous Dewetting Transitions of Droplets during Icing & Melting Cycle[J]. Nature Communications, 2022, 13(1):378. [58]CAO H, CHEN X, LI H. Dressing Strategy and Grinding Control for Cylindrical Microstructural Surface[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99(1/4):707-727. [59]HUANG Y, HUANG J, XIAO G,et al. Morphology and Wettability Analysis of Square Micropillar Structure Prepared by Laser-belt Machining on Inconel 718 Alloy Surface[J]. The International Journal of Advanced Manufacturing Technology, 2023, 127:1-15. [60]LI K, YAO W, LIU Y,et al. Wetting and Anti-fouling Properties of Groove-like Microstructured Surfaces for Architectural Ceramics[J]. Ceramics International, 2022, 48(5):6497-6505. [61]MA Q, TONG Z, WANG W,et al. Fabricating Robust and Repairable Superhydrophobic Surface on Carbon Steel by Nanosecond Laser Texturing for Corrosion Protection[J]. Applied Surface Science, 2018, 455:748-757. [62]PAN R, ZHANG H, ZHONG M. Triple-scale Superhydrophobic Surface with Excellent Anti-icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication[J]. ACS Applied Materials & Interfaces, 2021, 13(1):1743-1753. [63]WANG J, ZHANG Y, HE Q. Stretchable Superhydrophobic Fluororubber Fabricated by Transferring Mesh Microstructures[J]. Soft Matter, 2023, 19(8):1560-1568. [64]ZHENG J, YANG J, CAO W,et al. Fabrication of Transparent Wear-resistant Superhydrophobic SiO2 Film via Phase Separation and Chemical Vapor Deposition Methods[J]. Ceramics International, 2022, 48(21):32143-32151. [65]赵重阳,陆俊宇,王晓博,等.超声纵扭辅助铣削高强铝合金表面润湿性能研究[J]. 中国机械工程, 2022, 33(16):1912-1918. ZHAO Chongyang, LU Junyu, WANG Xiaobo, et al. Wettability of High-performance Aluminum Alloy Surfaces Machined Longitudinal-torsion Ultrasonic-assisted Milling[J]. China Mechanical Engineering, 2022, 33(16):1912-1918. [66]LIN O, XIAO G, LIU S,et al. Rapid Multiscale Surface Texture Manufacturing Process Using Hybrid Laser Belt Machining[J]. Journal of Materials Processing Technology, 2023, 319:118092. [67]LIU Z, LIU H, LI W,et al. Optimization of Bioinspired Surfaces with Enhanced Water Transportation Capacity[J]. Chemical Engineering Journal, 2022, 433:134568. [68]GUO C, ZHANG M, HU J. Fabrication of Hierarchical Structures on Titanium Alloy Surfaces by Nanosecond Laser for Wettability Modification[J]. Optics & Laser Technology, 2022, 148:107728. [69]MA J, LIU Y, ZHANG N,et al. Wettability Transition and Tribological Properties of Hydrophobic Alloy Surfaces Prepared by One-step Method[J]. Tribology International, 2023, 178:108020. [70]IQBAL M, DINH D K, ABBAS Q,et al. Controlled Surface Wettability by Plasma Polymer Surface Modification[J]. Surfaces, 2019, 2(2):349-371. [71]NAKAJIMA D, KIKUCHI T, NATSUI S,et al. Mirror-finished Superhydrophobic Aluminum Surfaces Modified by Anodic Alumina Nanofibers and Self-assembled Monolayers[J]. Applied Surface Science, 2018, 440:506-513. [72]XIE Y, TU P, XIAO Y,et al. Designing Non-fluorinated Superhydrophobic Fabrics with Durable Stability and Photocatalytic Functionality[J]. ACS Applied Materials & Interfaces, 2023,15(33):40011-40021. [73]GE C, YUAN G, GUO C,et al. Femtosecond Laser Fabrication of Square Pillars Integrated Siberian-cocklebur-like Microstructures Surface for Anti-icing[J]. Materials & Design, 2021, 204:109689. [74]李小磊,张磊,马晓雯,等.基于微肋板伸缩疏水/超疏水表面设计及其润湿性调控[J]. 机械工程学报, 2017, 53(5):167-174. LI Xiaolei, ZHANG Lei, MA Xiaowen, et al. Design and Wettability Control of Hydrophobic/Superhydrophobic Surfaces Based on the Extendable Micro-rib[J]. Journal of Mechanical Engineering, 2017, 53(5):167-174. [75]YU H D, ZHANG X R, WAN Y L,et al. Superhydrophobic Surface Prepared by Micromilling and Grinding on Aluminium Alloy[J]. Surface Engineering, 2016, 32(2):108-113. [76]GUO P, ZHENG Y, WEN M,et al. Icephobic/Anti-icing Properties of Micro/Nanostructured Surfaces[J]. Advanced Materials, 2012, 24(19):2642-2648. [77]ZHU J. A Novel Fabrication of Superhydrophobic Surfaces on Aluminum Substrate[J]. Applied Surface Science, 2018, 447:363-367. [78]CHEN W, WANG W, LUONG D X,et al. Robust Superhydrophobic Surfaces via the Sand-in Method[J]. ACS Applied Materials & Interfaces, 2022, 14(30):35053-35063. [79]WANG H, ZHANG Z, ZHENG J,et al. Multifunctional Superhydrophobic Surface with Dynamically Controllable Micro/Nanostructures for Droplet Manipulation and Friction Control[J]. Chemical Engineering Journal, 2021, 417:127944. [80]YUAN G, LIU Y, XIE F,et al. Fabrication of Superhydrophobic Gully-structured Surfaces by Femtosecond Laser and Imprinting for High-efficiency Self-cleaning Rain Collection[J]. Langmuir, 2022, 38(8):2720-2728. [81]MAGHSOUDI K, MOMEN G, JAFARI R,et al. Direct Replication of Micro-nanostructures in the Fabrication of Superhydrophobic Silicone Rubber Surfaces by Compression Molding[J]. Applied Surface Science, 2018, 458:619-628. [82]TIAN W, LI C, LIU K,et al. Fabrication of Transferable and Micro/Nanostructured Superhydrophobic Surfaces Using Demolding and iCVD Processes[J]. ACS Applied Materials & Interfaces, 2023, 15(1):2368-2375. [83]LI Q, LI Y, XU P,et al. One-step Fabrication Bioinspired Flexible Hierarchical Micro-nano Structures with Different Morphologies[J]. ACS Applied Materials & Interfaces, 2023, 15(36):43016-43025. [84]WANG B, WANG X, ZHENG H,et al. Surface Wettability Modification of Cyclic Olefin Polymer by Direct Femtosecond Laser Irradiation[J]. Nanomaterials(Basel), 2015, 5(3):1442-1453. [85]ZHU Z, WU J R, WU Z P,et al. Femtosecond Laser Micro/Nano Fabrication for Bioinspired Superhydrophobic or Underwater Superoleophobic Surfaces[J]. Journal of Central South University, 2022, 28(12):3882-3906. [86]BAI X, YANG Q, LI H,et al. Sunlight Recovering the Superhydrophobicity of a Femtosecond Laser-structured Shape-memory Polymer[J]. Langmuir, 2022, 38(15):4645-4656. [87]HE Y, WANG L, WU T,et al. Facile Fabrication of Hierarchical Textures for Substrate-independent and Durable Superhydrophobic Surfaces[J]. Nanoscale, 2022, 14(26):9392-9400. [88]WU B, ZHOU M, LI J,et al. Superhydrophobic Surfaces Fabricated by Microstructuring of Stainless Steel Using a Femtosecond Laser[J]. Applied Surface Science, 2009, 256(1):61-66. [89]YAO J, YAN Q, QIAN Q,et al. Directional Droplet Transfer on Micropillar-textured Superhydrophobic Surfaces Fabricated Using a ps Laser[J]. Applied Surface Science, 2022, 594, 153414. [90]NGUYEN H H, TIEU A K, WAN S,et al. Surface Characteristics and Wettability of Superhydrophobic Silanized Inorganic Glass Coating Surfaces Textured with a Picosecond Laser[J]. Applied Surface Science, 2021, 537:147808. [91]PAN Q, CAO Y, XUE W,et al. Picosecond Laser-textured Stainless Steel Superhydrophobic Surface with an Antibacterial Adhesion Property[J]. Langmuir, 2019, 35(35):11414-11421. [92]CUI M, HUANG H, WANG C,et al. Achieving Superhydrophobicity of Zr-based Metallic Glass Surfaces with Tunable Adhesion by Nanosecond Laser Ablation and Annealing[J]. ACS Applied Materials & Interfaces, 2022, 14(34):39567-39576. [93]LIU C, ZHENG J, LIU X,et al. Facile Laser-based Process of Superwetting Zirconia Ceramic with Adjustable Adhesion for Self-cleaning and Lossless Droplet Transfer[J]. Applied Surface Science, 2023, 638:158069. [94]HE Y, XIAO G, ZHU S,et al. Surface Formation in Laser-assisted Grinding High-strength Alloys[J]. International Journal of Machine Tools and Manufacture, 2023, 186:104002. [95]李晶,赵言辉,于化东,等.铝合金电刷镀与激光微加工耦合制备超疏水表面及其特性[J]. 中国机械工程, 2017, 28(1):82-87. LI Jing, ZHAO Yanhui, YU Huadong, et al. WAN Yanling. Fabrication and Properties of Superhydrophobic Surface on Aluminum Alloys Substrates by Brush Plating and Laser Processing Technology[J]. China Mechanical Engineering, 2017, 28(1):82-87. [96]顾秦铭,张朝阳,周晖,等.激光-电化学沉积制备超疏水铜表面及其Cassie状态稳定性研究[J].机械工程学报, 2020, 56(1):223-232. GU Qinming, ZHANG Zhaoyang, ZHOU Hui, et al. An Investigation into Preparation and Cassie State Stability Analysis of Superhydrophobic Copper Surface Produced by Laser Ablation and Electrodeposition[J]. Journal of Mechanical Engineering, 2020, 56(1):223-232. [97]LIU S, XIAO G, LIN O,et al. A New One-step Approach for the Fabrication of Microgrooves on Inconel 718 Surface with Microporous Structure and Nanoparticles Having Ultrahigh Adhesion and Anisotropic Wettability:Laser Belt Processing[J]. Applied Surface Science, 2023, 607:155108. [98]XIAO G, LIN O, ZHOU Y,et al. Fabrication of Micro-nano Multi-scale Hierarchical Porous Structure on the Surface of Inconel718 Nickel-base Superalloy by One-step Method[J]. Journal of Materials Processing Technology, 2022, 308:117734. [99]CHEN Q, ZHANG C, CAI Y,et al. Periodically Oriented Superhydrophobic Microstructures Prepared by Laser Ablation-chemical Etching Process for Drag Reduction[J]. Applied Surface Science, 2023, 615:156403. [100]MA C, KANG M, NDIITHI N J,et al. Wettability Transition of the Picosecond Laser-ablated 304 Stainless-steel Surface via Low-vacuum Heat Treatment[J]. Langmuir, 2021, 37(49):14314-14322. [101]ZHOU K, XIAO G, XU J,et al. Wear Evolution of Electroplated Diamond Abrasive Belt and Corresponding Surface Integrity of Inconel 718 during Grinding[J]. Tribology International, 2023, 177:107972. [102]ZHOU K, XIAO G, XU J,et al. Material Removal Behavior of Cf/SiC Ceramic Matrix Composites as a Function of Abrasive Wear during Diamond Abrasive Belt Grinding[J]. Wear, 2021:486-487. [103]ZHOU K, XU J, XIAO G,et al. A Novel Low-damage and Low-abrasive Wear Processing Method of Cf/SiC Ceramic Matrix Composites:Laser-induced Ablation-assisted Grinding[J]. Journal of Materials Processing Technology, 2022, 302:117503. [104]GUO X J, ZHANG D, XUE C H,et al. Scalable and Mechanically Durable Superhydrophobic Coating of SiO2/Polydimethylsiloxane/Epoxy Nanocomposite[J]. ACS Applied Materials & Interfaces, 2023, 15(3):4612-4622. [105]VILARO I, YAGUE J L, BORROS S. Superhydrophobic Copper Surfaces with Anticorrosion Properties Fabricated by Solventless CVD Methods[J]. ACS Applied Materials & Interfaces, 2017, 9(1):1057-1065. [106]KE C, ZHANG C, WU X,et al. Highly Transparent and Robust Superhydrophobic Coatings Fabricated via a Facile Sol-gel Process[J]. Thin Solid Films, 2021, 723:138583. [107]SHI S, ZHI C, ZHANG S,et al. Lotus Leaf-inspired Breathable Membrane with Structured Microbeads and Nanofibers[J]. ACS Applied Materials & Interfaces, 2022, 14(34):39610-39621. [108]崔炜,郝秀清,陈馨雯,等.脉冲光纤激光制备聚晶金刚石疏液表面的研究[J].中国机械工程, 2019, 30(1):30-37. CUI Wei, HAO Xiuqing, CHEN Xinwen, et al. Study on Fabrication of Lyophobic PCD by Pulsed Fiber Laser[J]. China Mechanical Engineering, 2019, 30(1):30-37. [109]YANG Y, BIAN Y, GAO Q,et al. Corrosion Resistance Study of Zn-Ni-B4C Composite Superhydrophobic Coatings with Hierarchical Rough Structure[J]. Applied Surface Science, 2023, 622:156882. [110]WANG N, WANG Q, XU S,et al. Fabrication of Hierarchical Structures on Concrete Surfaces with Superhydrophobicity Using Replicated Micro-nano Dendritic Structures[J]. Journal of Industrial and Engineering Chemistry, 2021, 103:314-321. [111]CHEN J, YUAN L, SHI C,et al. Nature-inspired Hierarchical Protrusion Structure Construction for Washable and Wear-resistant Superhydrophobic Textiles with Self-cleaning Ability[J]. ACS Applied Materials & Interfaces, 2021, 13(15):18142-18151. [112]LI N, ZHANG Y, ZHI H,et al. Micro/Nano-cactus Structured Aluminium with Superhydrophobicity and Plasmon-enhanced Photothermal Treap for Icephobicity[J]. Chemical Engineering Journal, 2022, 429:132183. [113]ZHENG B Y, KANG J J, DI Y L,et al. Study of the Wettability of Laser-built 3Cr13 Stainless Steel[J]. Surface Engineering, 2020, 37(12):1484-1495. [114]KHAN S A, BOLTAEV G S, IQBAL M,et al. Ultrafast Fiber Laser-induced Fabrication of Superhydrophobic and Self-cleaning Metal Surfaces[J]. Applied Surface Science, 2021, 542:148560. [115]PAN A, MEI X, WANG W,et al. In-situ Deposition of Oxidized Porous Metal Nanoparticles on the Surface of Picosecond Laser-induced Micro/Nano Structures:a New Kind of Meta-surface Equipped with Both Super-hydrophobicity and Anti-reflectivity[J]. Chemical Engineering Journal, 2023, 460:141582. [116]ZHAO M, YANG Z, ZHAO J,et al. Ultrasonic Vibration Assisted Laser(UVAL) Treatment of Copper for Superhydrophobicity[J]. Surface and Coatings Technology, 2021, 421:127386. [117]TRAN N G, CHUN D M. Ultrafast and Eco-friendly Fabrication Process for Robust, Repairable Superhydrophobic Metallic Surfaces with Tunable Water Adhesion[J]. ACS Applied Materials & Interfaces, 2022, 14(24):28348-28358. [118]NGO C V, CHUN D M. Effect of Heat Treatment Temperature on the Wettability Transition from Hydrophilic to Superhydrophobic on Laser-ablated Metallic Surfaces[J]. Advanced Engineering Materials, 2018, 20(7) :1701086. [119]HE A, LIU W, XUE W,et al. Nanosecond Laser Ablated Copper Superhydrophobic Surface with Tunable Ultrahigh Adhesion and Its Renewability with Low Temperature Annealing[J]. Applied Surface Science, 2018, 434:120-125. [120]ZHAO X, LI L, SHANG B,et al. Deep Understanding of the Dependence between Cu Surface Wettability and C-Adsorption/Desorption[J]. Applied Surface Science, 2023, 626, 157230. [121]CHEN J T, SHEN C H, YANG S D,et al. Acid and Temperature Dual-responsive Cotton Fabrics with Polymer Coating[J]. Composites Communications, 2017, 4:10-15. [122]XUE C H, LI M, GUO X J,et al. Fabrication of Superhydrophobic Textiles with High Water Pressure Resistance[J]. Surface & Coatings Technology, 2017, 310:134-142. [123]WU L, ZHANG J P, LI B C,et al. Facile Preparation of Super Durable Superhydrophobic Materials[J]. Journal of Colloid and Interface Science, 2014, 432:31-42. [124]ZHENG J, QU G, YANG B,et al. Facile Preparation of Robust Superhydrophobic Ceramic Surfaces with Mechanical Stability, Durability, and Self-cleaning Function[J]. Applied Surface Science, 2022, 576:151875. [125]XUE F, SHI X, BAIW,et al. Enhanced Durability and Versatile Superhydrophobic Coatings via Facile One-step Spraying Technique[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 640:128411. [126]SU J, SU F, YU H,et al. Synthesis of Superhydrophobic FAS-EP/PTFE Coating with Excellent Drag Reduction Performance and Mechanical Robustness[J]. Applied Surface Science, 2023, 634:157644. [127]LU C, GAO Y, YU S,et al. Non-fluorinated Flexible Superhydrophobic Surface with Excellent Mechanical Durability and Self-cleaning Performance[J]. ACS Applied Materials & Interfaces, 2022, 14(3):4750-4758. [128]TANG X, HUANG W, XIE Y,et al. Superhydrophobic Hierarchical Structures from Self-assembly of Cellulose-based Nanoparticles[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(42):14101-14111. [129]XU W, YI P, GAO J,et al. Large-area Stable Superhydrophobic Poly(dimethylsiloxane) Films Fabricated by Thermal Curing via a Chemically Etched Template[J]. ACS Applied Materials & Interfaces, 2019, 12(2):3042-3050. [130]LI M, LUO W, SUN H,et al. Micropatterned Amorphous Zr-based Alloys Coated with Silica Nanoparticles as Superhydrophobic Surfaces Against Abrasion[J]. ACS Applied Nano Materials, 2021, 4(11):12300-12307. [131]WANG S, WANG Y, ZOU Y,et al. Scalable-manufactured Superhydrophobic Multilayer Nanocomposite Coating with Mechanochemical Robustness and High-temperature Endurance[J]. ACS Applied Materials & Interfaces, 2020, 12(31):35502-35512. [132]GU W, LI W, ZHANG Y,et al. Ultra-durable Superhydrophobic Cellular Coatings[J]. Nature Communications, 2023, 14(1):5953. [133]PENG C, CHEN Z, TIWARI M K. All-organic Superhydrophobic Coatings with Mechanochemical Robustness and Liquid Impalement Resistance[J]. Nature Materials, 2018, 17(4):355-360. [134]GOLOVIN K, BOBAN M, MABRY J M,et al. Designing Self-healing Superhydrophobic Surfaces with Exceptional Mechanical Durability[J]. ACS Applied Materials & Interfaces, 2017, 9(12):11212-11223. [135]KE C, FANG Y, ZHOU Z,et al. Superhydrophobic Composite Coating with Excellent Mechanical Durability[J]. Coatings, 2022, 12(2):185. [136]MA W, YANG Z, ASIF M B,et al. Scalable-manufactured Anticorrosion and Wear-resistant Superhydrophobic Surfaces[J]. ACS Applied Engineering Materials, 2022, 1(1):519-529. [137]CHEN C H, CHENG I C, CHEN J Z. Facile Method to Convert Petal Effect Surface to Lotus Effect Surface for Superhydrophobic Polydimethylsiloxane[J]. Surfacesand Interfaces, 2022, 30:101901. [138]YU Y, DONG Y, NING H,et al. A Robust Superhydrophobic Coating with Multi-dimensional Micro-nano Structure on 5052 Aluminum Alloy[J]. Surface and Coatings Technology, 2023, 465(25):129564. [139]FU J, SUN Y, JIY,et al. Fabrication of Robust Ceramic Based Superhydrophobic Coating on Aluminum Substrate via Plasma Electrolytic Oxidation and Chemical Vapor Deposition Methods[J]. Journal of Materials Processing Technology, 2022, 306:117641. [140]YAMAUCHI Y, TENJIMBAYASHI M, SAMI-TSU S,et al. Durable and Flexible Superhydrophobic Materials:Abrasion/Scratching/Slicing/Droplet Impacting/Bending/Twisting-tolerant Composite with Porcupinefish-like Structure[J]. ACS Applied Materials & Interfaces, 2019, 11(35):32381-32389. [141]WANG H, HE M, LIU H,et al. One-step Fabrication of Robust Superhydrophobic Steel Surfaces with Mechanical Durability, Thermal Stability, and Anti-icing Function[J]. ACS Applied Materials & Interfaces, 2019, 11(28):25586-25594. [142]PANG B, QIAN J, ZHANG Y,et al. 5S Multifunctional Intelligent Coating with Superdurable, Superhydrophobic, Self-monitoring, Self-heating, and Self-healing Properties for Existing Construction Application[J]. ACS Applied Materials & Interfaces, 2019, 11(32):29242-29254. [143]ZHU J, DUAN Y. Facilely Etching of Superhydrophobic Surface with Regular Mulriple Hierarchical Micro-nano Structures for Crowning Wettability[J]. Applied Surface Science, 2023,648:159009. [144]WANG D, SUN Q, HOKKANEN M J,et al. Design of Robust Superhydrophobic Surfaces[J]. Nature, 2020, 582(7810):55-59. [145]ZHANG X, LIU Z, LI Y,et al. Durable Superhydrophobic Surface Prepared by Designing “Micro-Eggshell” and “Web-Like” Structures[J]. Chemical Engineering Journal, 2020, 392:123741. [146]CHEN C, TIAN Z, LUO X,et al. Cauliflower-like Micro-nano Structured Superhydrophobic Surfaces for Durable Anti-icing and Photothermal De-icing[J]. Chemical Engineering Journal, 2022, 450:137936. [147]CHEN C, TIAN Z, LUO X, et al. Micro-nano-nanowire Triple Structure-held PDMS Superhydrophobic Surfaces for Robust Ultra-long-term Icephobic Performance[J]. ACS Applied Materials & Interfaces, 2022, 14(20):23973-23982. [148]HAN J, CAI M, LIN Y, et al. Comprehensively Durable Superhydrophobic Metallic Hierarchical Surfaces via Tunable Micro-cone Design to Protect Functional Nanostructures[J]. RSC Advances, 2018, 8(12):6733-6744. [149]SHARMA A, ARORA H, GREWAL H S. Self-regenerative Superhydrophobic Metallic Coatings with Enhanced Durability[J]. Surface and Coatings Technology, 2023,462(15):128459. [150]LI M, LI Y, XUE F, et al. A Robust and Versatile Superhydrophobic Coating:Wear-resistance Study upon Sandpaper Abrasion[J]. Applied Surface Science, 2019, 480:738-748. [151]WU Z, SHI C, CHEN A, et al. Large-scale, Abrasion-resistant, and Solvent-free Superhydrophobic Objects Fabricated by a Selective Laser Sintering 3D Printing Strategy[J]. Advanced Science, 2023, 10(9):e2207183. [152]WANG P, LI C, ZHANG D. Recent Advances in Chemical Durability and Mechanical Stability ofSuperhydrophobic Materials:Multi-strategy Design and Strengthening[J]. Journal of Materials Science & Technology, 2022, 129:40-69. [153]LIU Y, CAO X, SHI J, et al. A Superhydrophobic TPU/CNTs@SiO2 Coating with Excellent Mechanical Durability and Chemical Stability for Sustainable Anti-fouling and Anti-corrosion[J]. Chemical Engineering Journal, 2022, 434:134605. [154]LIU M, LUO Y, JIA D. Polydimethylsiloxane-based Superhydrophobic Membranes:Fabrication, Durability, Repairability, and Applications[J]. Polymer Chemistry, 2020, 11(13):2370-2380. [155]LI Y, LI B, ZHAO X, et al. Totally Waterborne, Nonfluorinated, Mechanically Robust, and Self-healing Superhydrophobic Coatings for Actual Anti-icing[J]. ACS Applied Materials & Interfaces, 2018, 10(45):39391-39399. [156]LYU T, CHENG Z, ZHANG E, et al. Self-restoration of Superhydrophobicity on Shape Memory Polymer Arrays with both Crushed Microstructure and Damaged Surface Chemistry[J]. Small, 2017, 13(4):1503402. [157]FU K, LU C, LIU Y, et al. Mechanically Robust, Self-healing Superhydrophobic Anti-icing Coatings Based on a Novel Fluorinated Polyurethane Synthesized by a Two-step Thiol Click Reaction[J]. Chemical Engineering Journal, 2021, 404:127110. [158]ZHANG Z, XUE F, BAI W, et al. Superhydrophobic Surface on Al Alloy with Robust Durability and Excellent Self-healing Performance[J]. Surface and Coatings Technology, 2021, 410:126952. |
[1] | 姜德政, 胡军, 钟恒, 王洪光, 宋屹峰, 袁兵兵, . 一种滚动密封爬壁机器人的安全吸附条件与运动特性分析[J]. 中国机械工程, 2021, 32(22): 2757-2764. |
[2] | 李云峰, 石岩, . 脉冲频率对激光熔覆层微观组织与性能的影响[J]. 中国机械工程, 2021, 32(17): 2108-2117,2124. |
[3] | 李方义, 戚小霞, 李燕乐, 王黎明, 杜际雨, 许京伟, 孟晓宁. 盾构机关键零部件再制造修复技术综述[J]. 中国机械工程, 2021, 32(07): 820-831. |
[4] | 刘强, . 数控机床发展历程及未来趋势[J]. 中国机械工程, 2021, 32(07): 757-770. |
[5] | 黄海鸿, 汤杰, 钱正春, . [机械装备再制造]曲轴再制造耐磨熔覆层工艺参数优化[J]. 中国机械工程, 2018, 29(21): 2606-2614. |
[6] | 徐志强1,2;尹韶辉3;姜胜强1,2;朱科军1,2. 在线电解修整磨削与化学机械抛光相结合的蓝宝石基片组合加工技术[J]. 中国机械工程, 2018, 29(11): 1310-1315. |
[7] | 焦晓东, 巢炎, 吴立群, 姚安琦, 楼洪梁, 李仁旺. 基于直流-交变电场的单晶硅3D微纳结构制备方法研究[J]. 中国机械工程, 2015, 26(21): 2923-2928. |
[8] | 阮鸿雁1, 沈琪1, 宋振达2. 灰铸铁表面原位合成TiC/Al3Ti复合涂层的组织及耐磨性[J]. 中国机械工程, 2013, 24(16): 2253-2256. |
[9] | 贾贵西, 李言, 袁启龙, 崔凤奎. 磁控溅射制备Cr7C3多层复合镀层及其耐磨性能 [J]. 中国机械工程, 2011, 22(3): 363-366. |
[10] | 徐文骥1, 窦庆乐1, 孙晶1, 宋金龙1, 庞桂兵2. 基于电化学加工方法的铝基超疏水表面制备技术研究 [J]. 中国机械工程, 2011, 22(19): 2354-2359. |
[11] | 张鸿海;谢丹;刘胜;甘志银;. 基于荷花效应的双微观超疏水表面制作技术研究[J]. J4, 2009, 20(02): 0-251. |
[12] | 田欣利;杨俊飞;吴志远;佘安英;. 工程陶瓷先进加工技术的研究进展[J]. J4, 2008, 19(23): 0-2781. |
[13] | 蒋旻;栗卓新;王英杰;史耀武;. 含钒耐磨堆焊合金的组织与性能[J]. J4, 2008, 19(13): 0-1522. |
[14] | 阎秋生, 冯建华, 路家斌, 高伟强. 工具电极耐磨性和液体组分对电流变加工的影响[J]. 中国机械工程, 2007, 18(21): 2528-2531. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||