[1]庄景云. 变形高温合金GH4169[M]. 北京:冶金工业出版社, 2006:42-72.
ZHUANG Jingyun. Deformation of High- temperature Alloy GH4169[M]. Beijing:Metallurgical Industry Press, 2006:42-72.
[2]齐欢. INCONEL718(GH4169)高温合金的发展与工艺[J]. 材料工程, 2012(8):92-99.
QI Huan. Development and Process of INCONEL718 (GH4169) High Temperature Alloy[J]. Materials Engineering, 2012(8):92-99.
[3]SCHAFRIK R, WARD D, GROH J. Application of Alloy 718 in GE Aircraft Engines:Past, Present and Next Five Years[C]∥Superalloys 718, 625, 706 and Various Derivatives. Warrendale:the Minerals,Metals & Materials Society, 2001:1-11.
[4]PAULONIS D, SCHIRRA J. Alloy 718 at Pratt & Whitney-historical Perspective and Future Challenges[C]∥Superalloys 718, 625, 706 and Various Derivatives. Warrendale:the Minerals,Metals & Materials Society,2001:13-23.
[5]BARKER J F. The Initial Years of Alloy 718[C]∥Superalloys 718-Metallurya and Applications. Warrendale:the Minerals,Metals & Materials Society,1989:269-277.
[6]BECK T, PITZ G, LANG K H, et al. Thermalmechnical and Isothermal Fatigue of IN792 CC[J]. Mater. Sci. Eng. A, 1997, 234/236:719-722.
[7]MARCEL R. Thermomechanical Fatigue Behavior of the Intermetallic γ-TiAl Alloy TNB-V5 with Different Microstructures[J]. Metallurgical and Materials Transaction A, 2010, 41(3):717-726.
[8]KRAFT S, ZAUTER R, MUGHRABI H. Aspects of High-temperature Low-cycle Thermomechanical Fatigue of a Single Crystal Nickel-base Superalloy[J].Fatigue Fract. Eng. Mater. Struct., 1993, 16(2):237-253.
[9]BOISMIER D A, SEHITOGLU H. Thermomechanical Fatigue of Mar-M247 Part2 Life Prediction[J]. Journal of Engineering Materials & Technology, 1990, 112 (1):68-79.
[10]EVANS W J, SCREECH J E, Wllliams S J.Thermo-mechanical Fatigue and Fracture of INCO718[J]. International Journal of Fatigue, 2008(30):267- 267.
[11]JACOBSSON L,PERSSON C, MELIN S. Thermo-mechanical Fatigue Crack Propagation Experiments in Inconel 718[J]. International Journal of Fatigue, 2009(31):1318-1326.
[12]MOVERARW J, GUSTAFSSON D. Hold-time Effect on the Thermo-mechanical Fatigue Crack Growth Behaviour of Inconel 718[J]. Materials Science and Engineering A, 2011(528):8660-8670.
[13]SCHLESINGER M, SEIFERT T, PREUSSNER J. Experimental Investigation of the Time and Temperature Dependent Growth of Fatigue Cracks in Inconel 718 and Mechanism Based Lifetime Prediction[J]. International Journal of Fatigue, 2017(99):242-249.
[14]张国栋,苏彬,何玉怀,等.IC10合金TMF性能与寿命预测[J].中国有色金属学报, 2009,19(1):62-69.
ZHANG Guodong, SU Bin, HE Yuhuai, et al. TMF Properties and Life Prediction of IC10 Alloy[J]. The Chinese Journal of Nonferrous Metals, 2009,19(1):62-69.
[15]何琨,周军,罗强,等.核电用316LN不锈钢的TMF性能研究[J].核动力工程,2016(4):48-52.
HE Kun, ZHOU Jun, LVO Qiang, et al. Study on TMF Properties of 316LN Stainless Steel for Nuclear Power[J]. Nuclear Power Engineering, 2016(4):48-52.
[16]邓文凯,徐睛昊,江亮. IN718镍基高温合金的TMF性能[J]. 中国有色金属学报, 2019, 29(5):983-989.
DENG Wenkai, XU Jinghao, JIANG Liang. TMF Properties of IN718 Nickel-based High Temperature Alloy[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(5):983-989.
[17]CHARKALUK E, BIGNONET A, CON- STANTINESCU A, et al. Fatigue Design of Structures under Thermomechanical Loadings[J]. Fatigue Fract. Eng. Mater. Struct.,2002,25:1199-206
[18]VOESE F, BECKER M. An Approach to Life Prediction for a Nickel-base Superalloy under Isothermal and Thermo-mechanical Loading Conditions[J]. International Journal of Fatigue, 2013, 53(53):49-57.
[19]LEE K O, HONG S G, LEE S B. A New Energy-based Fatigue Damage Parameter in Life Prediction of High-temperature Structural Materials[J]. Materials Science & Engineering A, 2008, 496(1):471-477.
[20]GOCMEZ T, AWARKE A, PISCHINGER S. A New Low Cycle Fatigue Criterion for Isothermal and Out-of-phase Thermomechanical Loading[J]. International Journal of Fatigue, 2010, 32(4):769-779.
[21]AZADI M, FARRAHI G H, WINTER G, et al. Damage Prediction for Un-coated and Coated Aluminum Alloys under Thermal and Mechanical Fatigue Loadings Based on a Modified Plastic Strain Energy Approach[J]. Materials & Design, 2015, 66:587-595.
[22]SHI H, PLUVINAGE G. Cyclic Stress-strain Response during Isothermal and Thermomechanical Fatigue[J]. International Journal of Fatigue, 1994, 16(8):549-557.
[23]施惠基,牛莉,王中光.高温合金材料循环相关TMF寿命预测[J].固体力学学报, 1998(1):89-93.
SHI Huiji, NIU Li, WANG Zhongguang. Cycling- related TMF Life Prediction of High-temperature Alloy Materials[J]. Journal of Solid Mechanics, 1998(1):89-93.
[24]周东,施惠基,王中光.高温合金材料时间相关TMF寿命预测技术[J]. 工程力学, 2000, 17(1):68-74.
ZHOU Dong, SHI Huiji, WANG Zhongguang. Time-dependent TMF Life Prediction Technique for High-temperature Alloy Materials[J]. Engine- ering Mechanics, 2000, 17(1):68-74.
[25]张国栋,苏彬.高温低周应变疲劳的三参数幂函数能量方法研究[J]. 航空学报, 2007, 28(2):314-318.
ZHANG Guodong, SU Bin. Study on Three-parameter Power Function Energy Method for High-temperature Low-week Strain Fatigue[J]. Journal of Aeronautics, 2007, 28(2):314-318.
[26]章晓玲,刘峰,李俊.镍基高温合金TMF寿命预测方法研究[J].辽宁石油化工大学学报,2013,33(4):65-69.
ZHANG Xiaoling, LIU Feng, LI Jun. Research on TMF Life Prediction Method of Nickel-based High-temperature Alloy[J]. Journal of Liaoning University of Petrochemical Technology,2013, 33(4):65-69.[27]XIAO Jianfeng, CUI Haitao. A Physical-based Constitutive Model Considering the Motion of Dislocation for Ni3Al-base Superalloy[J]. Materials Science & Engineering A, 2020, 722:138-150.
[28]MA A, ROTERS F, A Constitutive Model for fcc Single Crystal Based on Dislocation Densities and Its Application to Uniaxial Compression of Aluminum Single Crystals[J]. Acta Mater., 2004, 52(12):3603-3612.
[29]MA A, ROTERS F, RABBE D. On the Consideration of Interactions between Dislocations and Grain Boundaries in Crystal Plasticity Finite Element Modelingtheory, Experiments and Simulations[J]. Acta Mater., 2006, 54(8):2181- 2194.
[30]王跃臣, 李守新, 艾素华, 等. DD8单晶镍基高温合金的热机械疲劳[J]. 金属学报, 2003, 39(9):903-907.
WANG Yuechen, LI Shouxin, AI Suhua, et al. TMF of DD8 Single Crystal Nickel- based High-temperature Alloy[J]. Journal of Metals, 2003, 39(9):903-907.
|