[1]MAO K, LI W, HOOKE C J, et al. Friction and Wear Behaviour of Acetal and Nylon Gears[J]. Wear, 2009, 267(1/4):639-645.
[2]CHOPANE A, GUPTA S, AJIT A, et al. Design and Analysis of Plastic Gears in Rack and Pinion Steering System for Formula Supra Car[J]. Materials Today:Proceedings, 2018, 5(2):5154-5164.
[3]宁林波. 车用精密塑料齿轮注射成型工艺参数优化[D]. 长沙:中南大学, 2011.
NING Linbo. Optimization of Injection Molding Process Parameters for Automotive Precision Plastic Gears[D]. Changsha:Central South University, 2011.
[4]HASL C, ILLENBERGER C, OSTER P, et al. Potential of Oil-lubricated Cylindrical Plastic Gears[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2018, 12(1):JAMDSM0016.
[5]KUROKAWA M, UCHIYAMA Y, NAGAI S. Performance of Plastic Gear Made of Carbon Fiber Reinforced Poly-ether-ether-ketone:Part 2[J]. Tribology International, 2000, 33(10):715-721.
[6]DEARN K, HOSKINS T, ANDREI L, et al. Lubrication Regimes in High-performance Polymer Spur Gears[J]. Advances in Tribology, 2013, 2013.
[7]DEARN K D, HOSKINS T J, PETROV D G, et al. Applications of Dry Film Lubricants for Polymer Gears[J]. Wear, 2013, 298:99-108.
[8]ZORKO D, KULOVEC S, DUHOVNIK J, et al. Durability and Design Parameters of a Steel/PEEK Gear Pair[J]. Mechanism and Machine Theory, 2019, 140:825-846.
[9]ILLENBERGER C M, TOBIE T, STAHL K. Flank Load Carrying Capacity of Oil-lubricated High Performance Plastic Gears[J]. Forschung im Ingenieurwesen, 2019, 83(3):545-552.
[10]LU Z, LIU H, ZHU C, et al. Identification of Failure Modes of a PEEK-Steel Gear Pair under Lubrication[J]. International Journal of Fatigue, 2019, 125:342-348.
[11]ILLENBERGER C M, TOBIE T, STAHL K. Damage Mechanisms and Tooth Flank Load Capacity of Oil-lubricated Peek Gears[J]. Journal of Applied Polymer Science, 2022, 139(30):e52662.
[12]WRIGHT N, KUKUREKA S. Wear Testing and Measurement Techniques for Polymer Composite Gears[J]. Wear, 2001, 251(1/12):1567-1578.
[13]HOSKIN S T, DEARN K, CHEN Y, et al. The Wear of PEEK in Rolling-sliding Contact-simulation of Polymer Gear Applications[J]. Wear, 2014, 309(1/2):35-42.
[14]AVANZINI A, DONZELLA G, MAZZù A, et al. Wear and Rolling Contact Fatigue of PEEK and PEEK Composites[J]. Tribology International, 2013, 57:22-30.
[15]刘瑞娟. 面向人工置换关节的3D打印PEEK材料的力学性能及耐磨性能研究[D]; 咸阳:陕西科技大学, 2021.
LIU Ruijuan.Study on Mechanical Properties and Wear Resistance of 3D Printing PEEK for Artificial Joint Replacement[D]. Xianyang:Shaanxi University of Science and Technology, 2021.
[16]张帆,王文中,赵自强,等. 渐开线直齿轮弹流润滑条件下的多轴疲劳寿命预估[J]. 摩擦学学报, 2017, 37(2):263-269.
ZHANG Fan, WANG Wenzhong, ZHAO Ziqiang, et al. Multi-axial Fatigue Lifetime Model for Involute Gear under EHL Lubrication Conditions[J]. Tribology, 2017, 37(2):263-269.
[17]冶金工业信息标准研究院, 洛阳轴承研究所, 钢铁研究总院. 金属材料 滚动接触疲劳试验方法:YB/T 5345—2014[S]. 北京:中国标准出版社, 2014.
Institute of Metallurgical Industry Information Standards, Luoyang Bearing Research Institute, General Institute of Iron and Steel Research. Metallic materials. Rolling contact fatigue fatigue test:YB/T 5345—2014[S]. Beijing :China Standards Publishing House, 2014.
[18]FZG. Thermoplastic Gear Wheels-Cylindrical Gears-Calculation of the Load-carrying Capacity:VDI 2736 Blatt 2—2014[S]. Munich:Verein Deutscher Ingenieure, 2014.
[19]柯扬船,郑玉斌. 聚醚醚酮结晶度的测定[J]. 材料研究学报, 1996(2):205-209.
KE Yangchuan, ZHENG Yubin. The Measurements of Crystallinity Degree of PEEK[J]. Chinese Journal of Materials Research, 1996(2):205-209.
[20]CHEN M, CHUNG C T. Crystallinity of Isothermally and Nonisothermally Crystallized Poly(Ether Ketone) Composites[J]. Polymer Composites, 1998, 19(6):689-697.
[21]FAJDIGA G, GLODE S, KRAMAR J. Pitting Formation Due to Surface and Subsurface Initiated Fatigue Crack Growth in Contacting Mechanical Elements[J]. Wear, 2007, 262(9/10):1217-1224.
[22]LU Z, LIU H, ZHANG R, et al. The Simulation and Experiment Research on Contact Fatigue Performance of Acetal Gears[J]. Mechanics of Materials, 2021, 154:103719.
[23]TRAUSMUTH A, STOSCHKA M, GRN F. Optimization of Disc Geometry and Hardness Distribution for Better Transferability of Fatigue Life Prediction from Disc to FZG Tests[J]. Wear, 2022, 498:204329.
[24]SAVOLAINEN M, LEHTOVAARA A. An Approach to Investigating Subsurface Fatigue in a Rolling/Sliding Contact[J]. International Journal of Fatigue, 2018, 117:180-188.
[25]HHN B-R, MICHAELIS K, DOLESCHEL A. Frictional Behaviour of Synthetic Gear Lubricants[M]∥Tribology Series. Munich:Elsevie, 2001:759-768.
|