[1]CHEN Jianbin, PENG Jiayu, LIN D K J. A Statistical Perspective on Non-deterministic Polynomial-time Hard Ordering Rroblems:Making Use of Design for Order-of-addition Experiments[J]. Computers & Industrial Engineering, 2021, 162:107773.
[2]姚丽丽,史海波,刘昶. 半导体封装测试生产线排产研究[J]. 自动化学报, 2014(5):892-900.
YAO Lili, SHI Haibo, LIU Xu. Research on Scheduling in Semiconductor Assembly and Test Manufacturing[J]. Acta Automatica Sinica, 2014(5):892-900.
[3]CHEN Xiaowu, JIANG Guozhang, XIAO Yongmao, et al. A Hyper Heuristic Algorithm Based Genetic Programming for Steel Production Scheduling of Cyber-physical System-oriented[J]. Mathematics, 2021, 9(18):2256.
[4]ZHANG Liping, HU Yifan, WANG Chuangjian, et al. Effective Dispatching Rules Mining Based on Near-optimal Schedules in Intelligent Job Shop Environment[J]. Journal of Manufacturing Systems, 2022, 63:424-438.
[5]APPELLO D, LAURINO M, PRANZO M. A Mathematical Model to Assess the Influence of Parallelism in a Semiconductor Back-end Test Floor[C]∥2017 International Test Conference in Asia (ITC-Asia). Taipei, 2017:138-143.
[6]MENG Leilei, GAO Kaizhou, REN Yaping, et al. Novel MILP and CP Models for Distributed Hybrid Flowshop Scheduling Problem with Sequence-dependent Setup Times[J]. Swarm and Evolutionary Computation, 2022, 71:101058.
[7]QIU Haifeng, GOOI H B. A Unified MILP Solution Framework for Adaptive Robust Scheduling Problems with Mixed-Integer Recourse Objective[J]. IEEE Transactions on Power Systems, 2022, 38(1):952-955.
[8]WANG Yuhang, HAN Yuyan, WANG Yuting, et al. Intelligent Optimization under the Makespan Constraint:Rapid Evaluation Mechanisms Based on the Critical Machine for the Distributed Flowshop Group Scheduling Problem[J/OL]. European Journal of Operational Research, 2023[2023-10-23]. https:∥doi.org/10.1016/j.ejor.2023.05.010.
[9]WANG H K, LIN Y C, LIANG C J, et al. Multi-subpopulation Parallel Computing Genetic Algorithm for the Semiconductor Packaging Scheduling Problem with Auxiliary Resource Constraints[J]. Applied Soft Computing, 2023, 142:110349.
[10]CHIU C C, LAI C M, CHEN C M. An Evolutionary Simulation-optimization Approach for the Problem of Order Allocation with Flexible Splitting Rule in Semiconductor Assembly[J]. Applied Intelligence, 2023, 53(3):2593-2615.
[11]牛昊一,吴维敏,章庭棋, 等.自适应樽海鞘群算法求解考虑运输时间的柔性作业车间调度[J].浙江大学学报(工学版),2023,57(7):1267-1277.
NIU Haoyi, WU Weimin, ZHANG Tingqi, et al. Adaptive Zunhei Scabbard Swarm Algorithm for Flexible Job Shop Scheduling Considering Transportation Time[J]. Journal of Zhejiang University (Engineering Edition), 2023,57(7):1267-1277.
[12]梁望,钱斌,胡蓉, 等.两阶段智能优化算法求解紧凑型带钢生产热轧调度问题[J/OL].计算机集成制造系统, 2023[2023-10-23]. http:∥kns.cnki.net/kcms/detail/11.5946.TP.20230801.1648.007.html.
LIANG Wang, QIAN Bin, HU Rong et al. A Two-stage Intelligent Optimization Algorithm for Solving the Hot Rolling Scheduling Problem of Compact Strip Production[J/OL]. Computer Integrated Manufacturing System, 2023[2023-10-23]. http:∥kns.cnki.net/kcms/detail/11.5946.TP.20230801.1648.007.html.
[13]ZHAO Weiguo, Wang Liying, MIRJALILI S. Artificial Hummingbird Algorithm:a New Bio-inspired Optimizer with Its Engineering Applications[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 388:114194.
[14]崔琪,吴秀丽,余建军. 变邻域改进遗传算法求解混合流水车间调度问题[J]. 计算机集成制造系统, 2017, 23(9):1917-1927.
CUI Qi, WU Xiuli, YU Jianjun. Improved Genetic Algorithm Variable Neighborhood Search for Solving Hybrid Flow Shop Scheduling Problem[J]. Computer Integrated Manufacturing System, 2017, 23(9):1917-1927.
|