[1]ZHANG Min, JI Xiangfei, LI Lijun. A Research on Fatigue Life of Front Axle Beam for Heavy-duty Truck[J]. Advances in Engineering Software, 2016, 91:63-68.
[2]李朝亮, 陈文琳, 陈国强, 等. 汽车前轴断裂失效分析[J]. 模具工业, 2018, 44(3):62-64.
LI Chaoliang, CHEN Wenlin, CHEN Guoqiang, et al. Fracture Failure Analysis of the Automotive Front Axle[J]. Die & Mould Industry, 2018, 44(3):62-64.
[3]WANG Xiaowen, HUA Lin. Finite Element Study on Microstructure Evolution and Grain Refinement in the Forging Process of Automotive Front Axle Beam[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(3):1179-1187.
[4]周智.汽车前轴结构轻量化设计及其可靠性评估研究[D]. 武汉:武汉理工大学, 2020.
ZHOU Zhi. Research on Structure Lightweight Design and Reliability Evaluation of Automobile Front Axle[D]. Wuhan:Wuhan University of Technology, 2020.
[5]SUN Weiyan, CHEN Liang, ZHANG Tailiang, et al. Preform Optimization and Microstructure Analysis on Hot Precision Forging Process of a Half Axle Flange[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(5):2157-2167.
[6]尚帅. 载重汽车前轴模锻毛坯的辊锻成形工艺研究[D]. 武汉:武汉理工大学, 2016.
SHANG Shuai. Research on the Roll Forging Process for the Optimal Blank of Truck Front Axle[D]. Wuhan:Wuhan University of Technology, 2016.
[7]张成成, 马潇磊, 张朝磊, 等. 汽车前轴用42CrMoH钢表面脱碳演变规律及控制[J]. 材料导报, 2020, 34(12):12127-12131.
ZHANG Chengcheng, MA Xiaolei, ZHANG Chaolei, et al. Evolution and Control of Surface Decarburization in Automobile Front Axle Steel 42CrMoH[J]. Materials Reports, 2020, 34(12):12127-12131.
[8]程丽杰. 国内外脱碳层深度测定方法标准综述[J]. 物理测试, 2020, 38(5):32-47.
CHENG Lijie. Overview of Domestic and Overseas Standards for Determination Method of Decarburization Depth[J]. Physics Examination and Testing, 2020, 38(5):32-47.
[9]李松原. U71Mn钢高温氧化与脱碳的研究[D]. 包头:内蒙古科技大学, 2013.
LI Songyuan. Research on High-temperature Oxidation and Decarburization of U71Mn Steel[D]. Baotou:Inner Mongolia University of Science & Technology, 2013.
[10]WANG Hui, SU Fuyong, WEN Zhi. Study on Decarburization Mechanism and Law of GCr15 Bearing Steel during Heat Treatment[J]. Advances in Materials Science and Engineering, 2022, 2022:3723680.
[11]张坤. 42CrMo钢氧化和脱碳行为研究[D]. 沈阳:东北大学, 2019.
ZHANG Kun. Study on Oxidation and Decarbonization of 42CrMo Steel[D]. Shenyang:Northeastern University, 2019.
[12]ZHAO Xiao, SONG Bo, ZHANG Yuanjie, et al. Decarburization of Stainless Steel during Selective Laser Melting and Its Influence on Young’s Modulus, Hardness and Tensile Strength[J]. Materials Science and Engineering:A, 2015, 647:58-61.
[13]陈波, 魏焕君, 耿志宇, 等. 热成形钢的脱碳影响因素分析[J]. 金属热处理, 2021, 46(2):161-167.
CHEN Bo, WEI Huanjun, GENG Zhiyu, et al. Analysis on Factors Affecting Decarburization of Hot Forming Steel[J]. Heat Treatment of Metals, 2021, 46(2):161-167.
[14]杨栋, 陈继林, 董庆, 等. 冷却速度对弹簧钢脱碳及拉伸性能的影响[J]. 热加工工艺, 2022, 51(4):137-139.
YANG Dong, CHEN Jilin, DONG Qing, et al. Effects of Cooling Rate on Decarbonization and Tensile Properties of Spring Steel[J]. Hot Working Technology, 2022, 51(4):137-139.
[15]李忠文. 钢脱碳对零部件疲劳寿命影响研究[J]. 材料研究与应用, 2022, 16(5):854-860.
LI Zhongwen. Study on the Effect of Steel Decarburization on Its Fatigue Life[J]. Materials Research and Application, 2022, 16(5):854-860.
[16]俞海, 刘云鹏. 梯度界面对Cu/WCP功能梯度材料力学性能影响[J]. 应用力学学报, 2022, 39(6):1178-1184.
YU Hai, LIU Yunpeng. The Effect of Gradient Interface on the Mechanical Properties of Cu/WCP Functionally Graded Materials[J]. Chinese Journal of Applied Mechanics, 2022, 39(6):1178-1184.
[17]BOUMEZBEUR K, KHEBIZI M, GUENFOUD M. Finite Element Modeling of Static and Cyclic Response of Functionality Graded Material Beams[J]. Asian Journal of Civil Engineering, 2023, 24(2):579-591.
[18]陈淑萍, 赵红晓, 耿少波, 等. 功能梯度材料Timoshenko型剪切梁的自由振动分析[J]. 材料科学与工程学报, 2018, 36(1):112-116.
CHEN Shuping, ZHAO Hongxiao, GENG Shaobo, et al. Free Vibration Analysis of Functionally Graded Timoshenko Shear Beam[J]. Journal of Materials Science and Engineering, 2018, 36(1):112-116.
[19]ZHAO Junfeng, FANG Jing, LI Yao. Dynamic Analysis of Functionally Graded Euler Beam with Elastically Restrained Edges[J]. Applied Mechanics and Materials, 2014, 684:182-190.
[20]曹源, 雷剑. 基于正弦剪切变形理论的功能梯度材料三明治微梁的静动态特性[J]. 复合材料学报, 2020, 37(1):223-235.
CAO Yuan, LEI Jian. Static and Dynamic Properties of Functionally Graded Materials Sandwich Microbeams Based on Sinusoidal Shear Deformation Theory[J]. Acta Materiae Compositae Sinica, 2020, 37(1):223-235.
[21]QADERI S, EBRAHIMI F, MAHESH V. Free Vibration Analysis of Graphene Platelets–reinforced Composites Plates in Thermal Environment Based on Higher-order Shear Deformation Plate Theory[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(4):902-912.
[22]石峰, 马洪英, 孙义真, 等. 基于n阶剪切变形理论的复合材料层合板屈曲分析[J]. 应用数学和力学, 2020, 41(12):1346-1357.
SHI Feng, MA Hongying, SUN Yizhen, et al. Buckling Analysis of Composite Laminate Plates Based on the nth-order Shear Deformation Theory[J]. Applied Mathematics and Mechanics, 2020, 41(12):1346-1357.
[23]丁叶铭. 纳米功能梯度夹层结构的热屈曲、力弯曲与热力弯曲研究[D]. 南京:南京航空航天大学, 2021.
DING Yeming. Study on Thermal Buckling, Force Bending and Thermal Bending of Nano-functionally Graded Sandwich Structure[D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2021.
[24]XIANG Song, JIN Yaoxing, BI Zeyang, et al. A n-order Shear Deformation Theory for Free Vibration of Functionally Graded and Composite Sandwich Plates[J]. Composite Structures, 2011, 93(11):2826-2832.
[25]BEN-OUMRANE S, ABEDLOUAHED T, ISMAIL M, et al. A Theoretical Analysis of Flexional Bending of Al/Al2O3 S-FGM Thick Beams[J]. Computational Materials Science, 2009, 44(4):1344-1350.
[26]LYU Zheng, LIU Hu. Nonlinear Bending Response of Functionally Graded Nanobeams with Material Uncertainties[J]. International Journal of Mechanical Sciences, 2017, 134:123-135.
[27]LI Wenxiong, MA Haitao, GAO Wei. A Higher-order Shear Deformable Mixed Beam Element Model for Accurate Analysis of Functionally Graded Sandwich Beams[J]. Composite Structures, 2019, 221:110830.
[28]KOUAMI K, FOUDIL M, EL MOSTAFA D. Finite Element Approach of Axial Bending Coupling on Static and Vibration Behaviors of Functionally Graded Material Sandwich Beams[J]. Mechanics of Advanced Materials and Structures, 2019, 28(15):1-17.
|