[1]HADAD M, SADEGHI B. Thermal Analysis of Minimum Quantity Lubrication—MQL Grinding Process[J]. International Journal of Machine Tools and Manufacture, 2012, 63:1-15.
[2]NWOGUH T O, OKAFOR A C, ONYISHI H A. Enhancement of Viscosity and Thermal Conductivity of Soybean Vegetable Oil Using Nanoparticles toform Nanofluids for Minimum Quantity Lubrication Machining of Difficult-to-cut Metals[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113(11):3377-3388.
[3]CHINCHANIKAR S, KORE S S, HUJARE P. A Review on Nanofluids in Minimum Quantity Lubrication Machining[J]. Journal of Manufacturing Processes, 2021, 68:56-70.
[4]ZHANG Y B, LI H N, LI C H, et al. Nano-enhanced Biolubricant in Sustainable Manufacturing:from Processability to Mechanisms[J].Friction, 2022,10(6):1-39.
[5]WANG Y G, LI C H, ZHANG Y B, et al. Processing Characteristics of Vegetable Oil-based Nanofluid MQL for Grinding Different Workpiece Materials[J]. International Journal of Precision Engineering and Manufacturing—Green Technology, 2018, 5(2):327-339.
[6]VIRDI R L, CHATHA S S, SINGH H. Experiment Evaluation of Grinding Properties under Al2O3 Nanofluids in Minimum Quantity Lubrication[J]. Materials Research Express, 2019, 6(9):096574.
[7]MAO C, TANG X J, ZOU H F, et al. Investigation of Grinding Characteristic Using Nanofluid Minimum Quantity Lubrication[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(10):1745-1752.
[8]BAI X F, LI C H, DONG L, et al. Experimental Evaluation of the Lubrication Performances of Different Nanofluids for Minimum Quantity Lubrication (MQL) in Milling Ti-6Al-4V[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(9):2621-2632.
[9]THAKUR A, MANNA A, SAMIR S. Multi-response Optimization of Turning Parameters during Machining of EN-24 Steel with SiC Nanofluids Based Minimum Quantity Lubrication[J]. Silicon, 2020, 12(1):71-85.
[10]SUI M H, LI C H, WU W T, et al. Temperature of Grinding Carbide with Castor Oil-based MoS2 Nanofluid Minimum Quantity Lubrication[J]. Journal of Thermal Science and Engineering Applications, 2021, 13(5):1-30.
[11]ZHANG Z C, SUI M H, Li C H, et al. Residual Stress of Grinding Cemented Carbide Using MoS2 Nano-lubricant[J]. The International Journal of Advanced Manufacturing Technology, 2022,119:5671-5685.
[12]PASHMFOROUSH F, BAGHERINIA R D. Influence of Water-based Copper Nanofluid on Wheel Loading and Surface Roughness during Grinding of Inconel 738 Superalloy[J]. Journal of Cleaner Production, 2018, 178:363-372.
[13]YUAN S M, HOU X B, WANG L, et al. Experimental Investigation on the Compatibility of Nanoparticles with Vegetable Oils for Nanofluid Minimum Quantity Lubrication Machining[J]. Tribology Letters, 2018, 66(3):1-10.
[14]PRABU L, SARAVANAKUMAR N, RAJARAM G. Influence of Ag Nanoparticles for the Anti-wear and Extreme Pressure Properties of the Mineral Oil Based Nano-cutting Fluid[J]. Tribology in Industry, 2018, 40(3):440-447.
[15]LEE P H, NAM J S, LI C J, et al. An Experimental Study on Micro-grinding Process with Nanofluid Minimum Quantity Lubrication (MQL)[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(3):331-338.
[16]SHEN B, SHIH A J, TUNG S C. Application of Nanofluids in Minimum Quantity Lubrication Grinding[J]. Tribology Transactions, 2008, 51(6):730-737.
[17]KUMAR M K, GHOSH A. On Grinding Force Ratio, Specific Energy, G-ratio and Residual Stress in SQCL Assisted Grinding Using Aerosol of MWCNT Nanofluid[J]. Machining Science and Technology,2021,25(4):585-607.
[18]GAO T, LI C H, YANG M, et al. Mechanics Analysis and Predictive Force Models for the Single-diamond Grain Grinding of Carbon Fiber Reinforced Polymers Using CNT Nano-lubricant[J]. Journal of Materials Processing Technology, 2021, 290:116976.
[19]SINGH H, SHARMA V S, DOGRA M. Exploration of Graphene Assisted Vegetables Oil Based Minimum Quantity Lubrication for Surface Grinding of TI-6AL-4V-ELI[J]. Tribology International, 2020, 144:106113.
[20]LI M, YU T B, ZHANG R C, et al. Experimental Evaluation of an Eco-friendly Grinding Process Combining Minimum Quantity Lubrication and Graphene-enhanced Plant-oil-based Cutting Fluid[J]. Journal of Cleaner Production, 2020, 244:118747.
[21]KRELL A, BLANK P, MA H, et al. Transparent Sintered Corundum with High Hardness and Strength[J]. Journal of the American Ceramic Society, 2003, 86(1):12-18.
[22]MUNRO R G. Material Properties of a Sintered α-SiC[J]. Journal of Physical and Chemical Reference Data, 1997, 26(5):1195-1203.
[23]DUB S, LYTVYN P, STRELCHUK V, et al. Vickers Hardness of Diamond and CBN Single Crystals:AFM Approach[J]. Crystals, 2017, 7(12):369.
[24]KANEKO Y, MIZUTA Y, NISHIJIMA Y, et al. Vickers Hardness and Deformation of Ni/Cu Nano-multilayers Electrodeposited on Copper Substrates[J]. Journal of Materials Science, 2005, 40(12):3231-3236.
[25]FENG Y, YUAN H L, ZHANG M. Fabrication and Properties of Silver-matrix Composites Reinforced by Carbon Nanotubes[J]. Materials Characterization, 2005, 55(3):211-218.
[26]VIRDI R L, CHATHA S S, SINGH H. Experiment Evaluation of Grinding Properties under Al2O3 Nanofluids in Minimum Quantity Lubrication[J]. Materials Research Express, 2019, 6(9):096574.
[27]SINGH A K, KUMAR A, SHARMA V, et al. Sustainable Techniques in Grinding:State of the Art Review[J]. Journal of Cleaner Production, 2020, 269:121876.
[28]王德祥,孙树峰,唐沂珍,等.微量润滑磨削界面的分子动力学模拟[J].西安交通大学学报,2020,54(12):168-175.
WANG Dexiang, SUN Shufeng, TANG Yizhen, et al. Molecular Dynamics Simulation for Grinding Interface under Minimum Quantity Lubrication[J]. Journal of Xi’an Jiaotong University, 2020, 54(12):168-175.
[29]王德祥,赵齐亮,张宇,等.离子液体在微量润滑磨削界面的摩擦学机理研究[J].中国机械工程,2022,33(5):560-568.
WANG Dexiang, ZHAO Qiliang, ZHANG Yu, et al.Investigation on Tribological Mechanism of Ionic Liquid on Grinding Interfaces under MQL[J]. China Mechanical Engineering, 2022,33(5):560-568.
[30]THOMPSON A P, AKTULGA H M, BERGER R, et al. LAMMPS—a Flexible Simulation Tool for Particle-based Materials Modeling at the Atomic, Meso, and Continuum Scales[J]. Computer Physics Communications, 2022, 271:108171.
[31]STUKOWSKI A. Visualization and Analysis of Atomistic Simulation Data with OVITO—the Open Visualization Tool[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18:015012.
[32]FAN Y H, WANG W Y, HAO Z P, et al. Work Hardening Mechanism Based on Molecular Dynamics Simulation in Cutting Ni-Fe-Cr Series of Ni-based Alloy[J]. Journal of Alloys and Compounds, 2020, 819:153331.
[33]HIREL P. Atomsk:a Tool for Manipulating and Converting Atomic Data Files[J]. Computer Physics Communications, 2015, 197:212-219.
[34]MARTNEZ L, ANDRADE R, BIRGIN E G, et al. PACKMOL:a Package for Building Initial Configurations for Molecular Dynamics Simulations[J]. Journal of Computational Chemistry, 2009, 30(13):2157-2164.
[35]JEWETT A I, STELTER D, LAMBERT J, et al. Moltemplate:a Tool for Coarse-grained Modeling of Complex Biological Matter and Soft Condensed Matter Physics[J]. Journal of Molecular Biology, 2021, 433(11):166841.
[36]LOS J H, KROES J M H, ALBE K, et al. Extended Tersoff Potential for Boron Nitride:Energetics and Elastic Properties of Pristine and Defective h-BN[J]. Physical Review B, 2017, 96(18):184108.
[37]BONNY G, TERENTYEV D, PASIANOT R C, et al. Interatomic Potential to Study Plasticity in Stainless Steels:the FeNiCr Model Alloy[J]. Modelling and Simulation in Materials Science and Engineering, 2011, 19(8):085008.
[38]LIU Z P, HUANG S P, WANG W C. A Refined Force Field for Molecular Simulation of Imidazolium-based Ionic Liquids[J]. The Journal of Physical Chemistry B, 2004, 108(34):12978-12989.
[39]VASHISHTA P, KALIA R K, NAKANO A, et al. Interaction Potentials for Alumina and Molecular Dynamics Simulations of Amorphous and Liquid Alumina[J]. Journal of Applied Physics, 2008, 103(8):083504.
[40]BASKES M I. Modified Embedded-atom Potentials for Cubic Materials and Impurities[J]. Physical Review B, 1992, 46(5):2727-2742.
[41]LENNARD-JONES J E. Cohesion[J]. Proceedings of the Physical Society, 1931, 43(5):461-482.
[42]郝兆朋, 韩雪, 范依航. 切削Ni-Fe-Cr-Co-Cu系镍基合金刀具磨损的分子动力学分析[J]. 机械工程与技术, 2020, 9(2):60-68.
HAO Zhaopeng, HAN Xue, FAN Yihang. Molecular Dynamics Analysis of Tool Wear in Cutting Ni-Fe-Cr-Co-Cu Based Nickel Alloys[J]. Mechanical Engineering and Technology,2020, 9(2):60-68.
[43]LIANG T, ZHANG P, YUAN P, et al. In-plane Thermal Transport in Black Phosphorene/Graphene Layered Heterostructures:a Molecular Dynamics Study[J]. Physical Chemistry Chemical Physics, 2018, 20(32):21151-21162.
[44]WANG Y G, LI C H, ZHANG Y B, et al. Experimental Evaluation on Tribological Performance of the Wheel/Workpiece Interface in Minimum Quantity Lubrication Grinding with Different Concentrations of Al2O3 Nanofluids[J]. Journal of Cleaner Production, 2017, 142:3571-3583.
[45]KUMAR A, GHOSH S, Aravindan S. Experimental Investigations on Surface Grinding of Silicon Nitride Subjected to Mono and Hybrid Nanofluids[J]. Ceramics International, 2019, 45(14):17447-17466.
[46]DUAN Z J, YIN Q A, LI C H, et al. Milling Force and Surface Morphology of 45 Steel under Different Al2O3 Nanofluid Concentrations[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(3):1277-1296.
[47]YIN Q A, LI C H, DONG L, et al. Effects of the Physicochemical Properties of Different Nanoparticles on Lubrication Performance and Experimental Evaluation in the NMQL Milling of Ti-6Al-4V[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99(9):3091-3109.
[48]YIN Q A, LI C H, ZHANG Y B, et al. Spectral Analysis and Power Spectral Density Evaluation in Al2O3 Nanofluid Minimum Quantity Lubrication Milling of 45 Steel[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(1):129-145.
[49]WANG Y G, LI C H, ZHANG Y B, et al. Experimental Evaluation of the Lubrication Properties of the Wheel/Workpiece Interface in MQL Grinding with Different Nanofluids[J]. Tribology International, 2016, 99:198-210.
|