[1]胡正寰,张康生,王宝雨,等. 楔横轧零件成形技术与模拟仿真[M]. 北京:冶金工业出版社,2004.
HU Zhenghuan, ZHANG Kangsheng, WANG Baoyu, et al.Technology and Simulation of Part Rolling by Cross Wedge Rolling[M]. Beijing:Metal Lugical Industry Press, 2004.
[2]贾震,张康生,胡正寰. 楔横轧一次楔成形汽车中间轴毛坯可行性分析[J]. 中国机械工程,2008,19(23):2876-2879.
JIA Zhen, ZHANG Kangsheng, HU Zhenghuan. Feasibility Study on Single Wedge Cross Wedge Rolling of Semi-finished Product of Automotive Middle Shaft[J]. China Mechanical Engineering, 2008, 19(23):2876-2879.
[3]PIEDRAHITA F. Three Dimensional Numerical Simulation of Cross Wedge Rolling of Bars[J]. Ad-vanced Technology of Plasticity, 2005, 1:257-258.
[4]ZHOU X, SHAO Z, PRUNCU C I, et al. A Stu-dy on Central Crack Formation in Cross Wedge Rolling[J]. Journal of Materials Processing Technology, 2020, 279:116549.
[5]PATER Z, TOMCZAK J, BULZAK T. Establish-ment of a New Hybrid Fracture Criterion for Cross Wedge Rolling[J]. International Journal of Mechanical Sciences, 2020, 167:105274.
[6]NOVELLA M F, GHIOTTI A, BRUSCHI S, et al. Ductile Damage Modeling at Elevated Temperature Applied to the Cross Wedge Rolling of AA6082-T6 Bars[J]. Journal of Materials Processing Technology, 2015, 222:259-267.
[7]PATER Z, TOCMCZAK J, BULZAK T, et al. Assessment of Ductile Fracture Criteria with Respect to Their Application in the Modeling of Cross Wedge Rolling[J]. Journal of Materials Processing Technology, 2020, 278:116501.
[8]GURSON A L. Continuum Theory of Ductile Rupture by Void Nucleation and Growth:Part Ⅰ—Yield Criteria and Flow Rules for Porous Ductile Media[J]. Joural of Engineering Materials and Technology,1977 (99):2-15.
[9]LEMAITRE J. A Continuous Damage Mechanics Model for Ductile Fracture[J]. Journal of Engineering Materials and Technology, 1985 (107):83-89.
[10]孙洪涛. 基于修正GTN模型的楔横轧轴类件心部缺陷研究[D]. 秦皇岛:燕山大学,2020.
SUN Hongtao. Research on Center Defects of Cross Wedge Rolling Axles Based on Modified GTN Model[D]. Qinhuangdao:Yanshan University, 2020.
[11]杨超众,崔振山,隋大山,等. 316LN 钢热成形过程损伤断裂模型与数值模拟[J]. 塑性工程学报,2014,21(5):93-99.
YANG Chaozhong, CUI Zhenshan, SUI Dashan, et al.Modelling and Simulation of 316LN Steel Damage and Fracture during Hot Deformation[J]. Journal of Plasticity Engineering, 2014, 21(5):93-99.
[12]PATER Z, TOMCZAK J, BULAZAK T, et al. Determination of the Critical Damage for 100Cr6 Steel under Hot Forming Conditions[J]. Engineering Failure Analysis, 2021, 128:105588.
[13]林龙飞. 大型轴类零件柔性斜轧工艺及关键技术研究[D]. 北京:北京科技大学, 2021.
LIN Longfei. Research on the Key Technology of Flexible Skew Rolling Process for Large Shafts[D]. Beijing:University of Science and Technology Beijing, 2021.
[14]余鹏,陈波,马福祥,等. 含缺陷拉杆端头淬火过程的数值模拟研究[J]. 应用科技,2022,49(5):120-125.
YU Peng, CHEN Bo, MA Fuxiang, et al. Numerical Simulation Study on Quenching Process of End of Pull Rod with Defects[J]. Applied Science and Technology, 2022, 49(5):120-125.
[15]李汉林,何涛,霍元明,等. LZ50车轴钢高温拉伸变形行为及塑性损伤形成机理[J]. 塑性工程学报,2022,29(12):142-150.
LI Hanlin, HE Tao, HUO Yuanming, et al. High-temperature Tensile Deformation Behavior and Plastic Damage Formation Mechanisms of LZ50 Axle Steel[J]. Journal of Plasticity Engineering, 2022, 29(12):142-150.
[16]JOUN M, CHOI I, EOM J, et al. Finite Element Analysis of Tensile Testing with Emphasis on Necking[J]. Computational Materials Science, 2007, 41(1):63-69.
[17]黑志刚,段兴旺,刘建生. 温度和应变速率对316LN钢高温性能的影响[J]. 太原科技大学学报,2012,33(4):290-293.
HEI Zhigang, DUAN Xingwang, LIU Jiansheng. Influence of Temperature and Strain Rate on the High-temperature Performances of 316LN Steel[J]. Journal of Taiyuan University of Science and Technology, 2012, 33(4):290-293.
[18]SUZUKI H G,NISHIMURA S, YAMAGUCHI S. Characteristics of Hot Ductility in Steels Subjected to the Melting and Solidification[J]. Transactions of the Iron and Steel Institute of Japan, 1982, 22(1):48-56.
[19]RICE J R, TRACEY D M. On the Ductile Enlargement of Voids in Triaxial Stress Fields[J]. Journal of the Mechanics, Physics of Solids, 1969, 17:201-217.
[20]LEMAITRE J, DESMORAT R. Engineering Damage Mechanics:Ductile, Creep, Fatigue and Brittle Failures[M].Berlin:Springer, 2005.
[21]YU F, HENDRY M T, JAR P Y B, et al. A Coupled Stress-triaxiality-dependent Damage Viscoplasticity Model on Crack Initiation and Propagation in High-strength Rail-steel[J]. Theoretical and Applied Fracture Mechanics, 2020, 109:102769.
[22]MCQUEEN H. Development of Dynamic Recrystallization Theory[J]. Materials Science and Engineering, 2004, 387:203-208.
[23]LEMAITRE J,Dufailly J. Damage Measurements[J]. Engineering Fracture Mechanics, 1987, 28(5/6):643-661.
[24]BONORA N, RUGGIERO A, ESPOSITO L, et al.CDM Modeling of Ductile Failure in Ferritic Steels:Assessment of the Geometry Transferability of Model Parameters[J]. International Journal of Plasticity, 2006, 22(11):2015-2047.
[25]KANG W J, CHO S S, HUH H, et al. Modified Johnson-Cook Model for Vehicle Body Crashworthiness Simulation[J]. International Journal of Vehicle Design, 1999, 21(4/5):424-435.[26]田宪华,闫奎呈,赵军,等. GH2132高温高应变率下力学性能分析与Johnson-Cook本构模型的建立[J]. 中国机械工程,2022,33(7):872-881.
TIAN Xianhua, YAN Kuicheng, ZHAO Jun, et al. Properties at Elevated Temperature and High Strain Rate and Establishment of Johnson-Cook Constitutive Model for GH2132[J]. China Mechanical Engineering, 2022, 33(7):872-881.
|