为了提高SIFT特征匹配的效率,首先改造了SIFT特征描述符相似性度量的形式,以街区距离代替欧氏距离作为特征描述符之间的相似性度量,降低了相似性度量公式的时间复杂度;其次,提出了最近邻和次近邻假设算法,即假设待匹配图像中任意2个特征点为最近邻点和次近邻点,通过比较当前特征点与待匹配图像中其他特征点之间的距离,以及当前特征点与假设的最近邻和次近邻之间的距离,实现最近邻和次近邻的替换,最终得到实际的最近邻点和次近邻点。算法减少了相似性计算过程中特征点比较的次数,从而减小了算法的计算量。实验结果表明,提出的算法在保持鲁棒性的同时提高了SIFT特征匹配的效率,能够为一些快速性应用提供保障。