提出了通过比较标准图像与待测图像差异并分析差异区域边界进行印刷线路板(PCB)缺陷检测与识别的算法。在同一位置采集多幅标准PCB图像并计算其灰度平均值从而得到标准图,将待测PCB图与其进行对比。首先使用限定区域Hough变换快速检测出图像中相互垂直相交的细短标志线,将线段的交点作为特征点并计算其坐标,进而对标准图与待测图进行仿射变换配准,差影计算后,再通过二值化、形态学处理等去除伪缺陷,即可获取缺陷区域位置。在此基础之上,对处理过的差影图进行膨胀处理,通过边界检测获取各个缺陷区域闭合轮廓各点坐标。分析各个轮廓坐标对应阈值分割后的配准待测图中点的像素值,并结合缺陷是缺料缺陷还是多料缺陷识别出缺陷类型。对合格的和有缺陷的PCB图各200幅进行算法测试,检测准确率为98.3%,基本能够稳定检测出常规缺陷。