针对工业机器人应用于飞机柔性化自动装配时绝对定位精度不能满足装配精度的问题,在机器人空间网格精度补偿方法的基础上,综合考虑环境温度的变化对机器人的绝对定位精度的影响,提出了基于神经网络的机器人综合精度补偿方法。为了防止神经网络在训练中陷入局部极值,采用粒子群优化方法对它的初始权值和阈值进行了优化。实验结果表明,当温度在20~30℃范围内变化时,机器人的绝对定位误差由补偿前的1~3mm,提高到补偿后的绝对定位误差最大值为0.32mm,平均值为0.194mm,精度较未补偿前有了大幅提高,可以满足飞机自动化装配的高精度的要求。