[1]李扩社[1],徐静[1],杨红川[1],袁永强[1],徐建林[1],于敦波[1],张深根[1].稀土超磁致伸缩材料发展概况[J].稀土,2004,25(4):51-56.
[2]郭东明,杨兴,贾振元,武丹.超磁致伸缩执行器在机电工程中的应用研究现状[J].中国机械工程,2001,12(6):724-727.
[3]卢全国[1,2],陈定方[1],钟毓宁[3],陈敏[1].超磁致伸缩致动器热变形影响及温控研究[J].中国机械工程,2007,18(1):16-19.
[4]Zhao Xinlong,Tan Yonghong. Modeling Hysteresis and Its Inverse Model Using Neural Networks Based on Expanded Input Space Method[J]. IEEE Transactions on Control Systems Technology, 2008, 16 (3) :484-490.
[5]黄平林[1,2],胡虔生[2].基于人工神经网络的Preisach磁滞模型与实现[J].电工电能新技术,2009,28(1):43-45.
[6]Dimitre M, Luc D, Marc D W, et al. Modeling of Quasistatic Magnetic Hysteresis with Feed-Forward Neural Networks[J]. Journal of Applied Physics, 2001,89 ( 11 ) : 6737-6739.
[7]郑军红[1],叶修梓[1],陈志杨[2].基于神经网络和遗传算法的智能夹具规划[J].中国机械工程,2008,19(19):2376-2381.
[8]Sixdenier F,Scorretti R,Marion R,et al. Quasistatic Hysteresis Modeling with Feed-Forward Neural Networks: Influence of the Last But One Extreme Values[J]. Journal of Magnetism and Magnetic Materials, 2008,320 (20) : 992-996.
[9]Kucuk I. Prediction of Hysteresis Loop in Magnetic Cores Using Neural Network and Genetic Algorithm [J]. Journal of Magnetism and Magnetic Materials, 2006,305(2) :423-427.
[10]Cincotti S, Marchesi M, Serri A. A Neural Network Model of Parametric Non-linear Hysteretic Inductors [ J]. IEEE Transactions on Magnetics, 1998,34(5) :3040-3043.
[11]Serpico C, Visone C. Magnetic Hysteresis Modeling via Feed-Forward Neural Networks[J]. IEEE Transactions on Magnetics, 1998,34 (3) : 623-628.
[12]贾振元[1],马建伟[1],刘巍[1],王福吉[1].多几何要素影响下液压阀件特性的混合神经网络预测模型[J].机械工程学报,2010(2):126-131.
[13]Wilamowski B M, Kaynak O, Iplikci S, et al. An Algorithm for Fast Convergence in Training Neu ral Networks [C]//Proceedings of International Joint Conference on Neural Networks. Washington,2001 : 1778-1782. |