[1]Nakano T, Tanaka K, Nakazawa T, et al. Development of Large-capacity Single-casing Reheat Steam Turbines for Single-shaft Combined Cycle Plant[J]. Technical Review, 2005,42(3):1-5.
[2]史进渊, 邓志成, 汪勇, 等. 汽轮机转子初始裂纹高周疲劳安全性分析方法及其在焊接转子中的应用[J]. 动力工程学报, 2013,33(1):17-23.
Shi Jinyuan, Deng Zhicheng, Wang Yong,et al. High Cycle Fatigue Safety Analysis for Steam Turbine Rotors with Initial Cracks and Its Application to a Welded Rotor[J]. Chinese Journal of Power Engineering, 2013,33(1):17-23.
[3]Masur Z. Numerical Prediction of the Microstructure of Weld Heat Affected Zone (HAZ) in SMAW Weld Deposits on Cr-Mo-V Steel[J]. Welding International, 2002,16(11):872-878.
[4]朱明亮. 汽轮机转子钢近门槛区的裂纹扩展与超高周疲劳行为研究[D]. 上海:华东理工大学,2011.
[5]Chen D L, Weiss B, Stickler R. The Effective Fatigue Threshold: Significance of the Loading Cycle Below the Crack Opening Load[J]. International Journal of Fatigue,1994,16(7):485-491.
[6]吴健栋, 蔡志鹏, 潘际銮, 等. 疲劳裂纹扩展门槛值的影响因素综述[J]. 热力透平,2013(2):84-89.
Wu Jiandong,Cai Zhipeng, Pan Jiluan, et al. Overview of Influencing Factors of Fatigue Crack Growth Threshold[J]. Thermal Turbine, 2013(2):84-89.
[7]Ritchie R O. Mechanisms of Fatigue-crack Propagation in Ductile and Brittle Solids[J]. International Journal of Fracture, 1999,100(1):55-83.
[8]Davidson D L, Lankford J. Fatigue Crack Growth in Metals and Alloys:Mechanisms and Micromechanics[J]. International Materials Reviews, 1992,37(1):45-76.
[9]李荣夫, 张远, 陈军. 30Cr2Ni4MoV转子钢疲劳断裂性能研究[J]. 黑龙江电力, 2003,25(3):172-174.
Li Rongfu, Zhang Yuan, Chen Jun. Fatigue and Fracture Property of Turbine Rotor
Steel-30Cr2Ni4MoV[J]. Heilongjiang Electric Power, 2003,25(3):172-174.
[10]陈晶涛, 李静, 牛刚. 30Cr2Ni4MoV转子钢室温裂纹扩展性能研究[J]. 汽轮机技术, 1998,40(1):57-60.
Chen Jingtao, Li Jing,Niu Gang. Research on the Crack Propagation of 30Cr2Ni4MoV at Room Temperature[J]. Turbine Technology, 1998,40(1):57-60.
[11]McEvily A J, Ritchie R O. Crack Closure and the Fatigue-crack Propagation Threshold as a Function of Load Ratio[J]. Fatigue and Fracture of Engineering Materials and Structure, 1998,21:847-856.
[12]Kujawski D. Utilization of Partial Crack Closure for Fatigue Crack Growth Modeling[J]. Engineering Fracture Mechanics, 2002,69(12):1315-1324.
[13]Vallellano C, Navarro A, Dominguez J. Two-parameter Fatigue Crack Growth Driving Force: Successive Blocking of the Monotonic and Cyclic Plastic Zones at Microstructural Barriers[J]. International Journal of Fatigue, 2013,46:27-34.
[14]沈珉, 杨海元. 裂纹闭合和循环塑性预应变及循环载荷压缩部分对裂纹扩展速率的影响[J]. 试验力学, 1999,14(3):302-308.
Shen Min, Yang Haiyuan.Examining on some Factors Which Influences the Crack Expending Rate da/dN[J]. Journal of Experimental Mechanics, 1999,14(3):302-308.
[15]张田忠, 郭万林, 徐绯. 考虑应力状态的疲劳裂纹闭合分析[J]. 航空学报, 2001,22(1):24-29.
Zhang Tianzhong,Guo Wanlin, Xu Fei. Theoretical Analysis of Fatigue Crack Closure Considering Stress States[J]. Acta Aeronautica Et Astronautica Sinica, 2011,22(1):24-29.
[16]Lawson L, Chen E Y, Meshii M. Near-threshold Fatigue: a Review[J]. International Journal of Fatigue, 1999,21:S15-S34.
|