[1]徐九华,张志伟,傅玉灿. 镍基高温合金高效成型磨削的研究进展与展望[J]. 航空学报,2014,35(2): 351-360.
XU Jiuhua, ZHANG Zhiwei, FU Yucan. Review and Rrospect on High Efficiency Profile Grinding of Nickel-based Superalloys[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 351-360.
[2]邓朝晖,万林林,张荣辉. 难加工材料高效精密磨削技术研究进展[J]. 中国机械工程,2008,19(24): 3018-3023.
DENG Zhaohui, WAN Linlin, ZHANG Ronghui. Research Progresses of High Efficiency and Precision Grinding for Hard to Machine Materials[J]. China Mechanical Engineering, 2008,19(24): 3018-3023.
[3]任敬心, 康仁科, 王西彬. 难加工材料磨削技术[M]. 北京: 电子工业出版社, 2011.
REN Jingxin, KANG Renke, WANG Xibin. Grinding Technology of Difficult-to-machine Materials[M]. Beijing: Publishing House of Electronics Industry, 2011.
[4]YAO C F, JIN Q C, HUANG X C, et al. Research on Surface Integrity of Grinding Inconel718[J]. The International Journal of Advanced Manufacturing Technology, 2013, 65(5/8): 1019-1030.
[5]SHAIKH J H, JAIN N K. Modeling of Material Removal Rate and Surface Roughness in Finishing of Bevel Gears by Electrochemical Honing Process[J]. Journal of Materials Processing Technology, 2014, 214(2): 200-209.
[6]TAWAKOLI T, RASIFARD A, RABIEY M. High-efficiency Internal Cylindrical Grinding with a New Kinematic[J]. International Journal of Machine Tools and Manufacture, 2007, 47(5): 729-733.
[7]KLOCKE F. Manufacturing Processes 2: Grinding, Honing, Lapping[M]. Berlin:Springer, 2009.
[8]MOOS U, BHRE D. Analysis of Process Forces for the Precision Honing of Small Bores[J]. Procedia CIRP,2015, 31: 387-392.
[9]彭海,袁方. 难加工材料的珩磨加工技术研究[J]. 金刚石与磨料磨具工程, 2010(2): 21-24.
PENG Hai, YUAN Fang. Research of Honing Technology for Difficult-to-machine Materials[J]. Diamond & Abrasives Engineering, 2010(2): 21-24.
[10]黄大顺,杨长勇,傅玉灿,等. 镍基高温合金珩磨材料去除率研究[J]. 南京航空航天大学学报, 2014, 46(5): 726-731.
HUANG Dashun, YANG Changyong, FU Yucan, et al. Study on Material Removal Rate of Nickel-based Superalloy during Honing[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(5):726-731.
[11]VRAC D S, SIDJANIN L P, KOVAC P P, et al. The Influence of Honing Process Parameters on Surface Quality, Productivity, Cutting Angle and Coefficients of Friction[J]. Industrial Lubrication and Tribology, 2012, 64(2): 77-83.
[12]BUJ-CORRAL I, VIVANCOS-CALVET J. Roughness Variability in the Honing Process of Steel Cylinders with CBN Metal Bonded Tools[J]. Precision Engineering, 2011, 35(2): 289-293.
[13]BUJ-CORRAL I, VIVANCOS-CALVET J, COBA-SALCEDO M. Modelling of Surface Finish and Material Removal Rate in Rough Honing[J]. Precision Engineering, 2014, 38(1): 100-108.
[14]GOELDEL B, MANSORI M E, DUMUR D. Macroscopic Simulation of the Liner Honing Process[J]. CIRP Annals - Manufacturing Technology, 2012, 61(1): 319-322.
[15]GOELDEL B, MANSORI M E, DUMUR D. Simulation of Roughness and Surface Texture Evolution at Macroscopic Scale during Cylinder Honing Process[J]. Procedia CIRP, 2013(8): 27-32.
[16]张云电. 现代珩磨技术[M]. 北京: 科学出版社, 2007.
ZHANG Yundian. Modern Honing Technology[M]. Beijing: Science Press, 2007.
[17]BHRE D, SCHMITT C, MOOS U. Analysis of the Differences between Force Control and Feed Control Strategies during the Honing of Bores[J]. Procedia CIRP, 2012(1): 377-381.
[18]任敬心, 华定安, 周文亚, 等. 磨削原理[M]. 北京: 电子工业出版社, 2011.
REN Jingxin, HUA Dingan, ZHOU Wenya, et al. Principles of Grinding[M]. Beijing: Publishing House of Electronics Industry, 2011.
[19]HECKER R L, LIANG S Y. Predictive Modeling of Surface Roughness in Grinding[J]. International Journal of Machine Tools and Manufacture. 2003, 43(8): 755-761. |