China Mechanical Engineering

Previous Articles     Next Articles

Fault Diagnosis of Rolling Bearings Based on Path Graph Laplacian Norm and Mahalanobis Distance

YANG Hanjian1, 2;YU Dejie1;GAO Yiyuan1   

  1. 1.State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,Hunan University,Changsha,410082
    2.School of Mechanical and Optoelectronic Physics,Huaihua University, Huaihua,Hunan,418008
  • Online:2017-10-25 Published:2017-10-24
  • Supported by:
    National Natural Science Foundation of China (No. 51275161)

基于路图拉普拉斯算子范数和马氏距离的滚动轴承故障诊断

杨汉键1, 2;于德介1;高艺源1   

  1. 1.湖南大学汽车车身先进设计制造国家重点实验室,长沙,410082
    2.怀化学院机械与光电物理学院,怀化,418008
  • 基金资助:
    国家自然科学基金资助项目(51275161);
    湖南大学汽车车身先进设计制造国家重点实验室自主课题资助项目(71375004);
    怀化学院一般项目(HHUY2017-01)
    National Natural Science Foundation of China (No. 51275161)

Abstract: In order to extract fault features of vibration signals of rolling bearings effectively, the graph signal processing technology was introduced into fault diagnosis of rolling bearings. Vibration signals of a rolling bearing was firstly transformed into path graph signal. Then, the path graph Laplacian norm was calculated as characteristic parameters, and the standard feature space was obtained. Finally, the Mahalanobis distance of test samples and the standard feature space were used to identify fault patterns of the rolling bearings. Analytic results of the practical vibration signals of rolling bearings demonstrate that the proposed method may be used to diagnose the rolling bearing faults effectively.

Key words: signal processing, Laplacian operator, rolling bearing, fault diagnosis

摘要: 为有效提取滚动轴承振动信号的故障特征,将图信号处理技术引入故障诊断领域。首先根据滚动轴承振动信号构造路图,获得路图信号;再将计算得到的路图拉普拉斯算子范数作为特征参数,构造不同故障的标准特征空间;最后通过测试样本与标准特征空间的马氏距离实现不同故障模式的识别。实测滚动轴承振动信号的分析结果表明,该方法能有效诊断轴承故障。

关键词: 信号处理, 拉普拉斯算子, 滚动轴承, 故障诊断

CLC Number: