[1]ZAEH M F, BRANNER G. Investigations on Residual Stresses and Deformations in Selective Laser Melting[J]. Production Engineering, 2010, 4(1): 35-45.
[2]IBIYE ASEIBICHIN R. Investigation of Residual Stresses in the Laser Melting of Metal Powders in Additive Layer Manufacturing[D]. Wolverhampton: University of Wolverhampton, 2012.
[3]CHENG B, CHOU K. Thermal Stresses Associated with Part Overhang Geometry in Electron Beam Additive Manufacturing: Process Parameter Effects[C]//25th Annual International Solid Freeform Fabrication Symposium:an Additive Manufacturing Conference. Austin, 2014:1076-1087.
[4]ROMBOUTS M, FROYEN L, GUSAROV A V, et al. Photopyroelectric Measurement of Thermal Conductivity of Metallic Powders[J]. Journal of Applied Physics, 2005, 97(2):59.
[5]KROL T A, ZAEH M F, SEIDEL C. Optimization of Supports in Metal-based Additive Manufacturing by Means of Finite Element Models[J]. International Journal of Robust & Nonlinear Control, 2012, 25(17):3349-3366.
[6]CALIGNANO F. Design Optimization of Supports for Overhanging Structures in Aluminum and Titanium Alloys by Selective Laser Melting[J]. Materials & Design, 2014, 64(9):203-213.
[7]CRAEGHS T, CLIJSTERS S, KRUTH J P, et al. Detection of Process Failures in Layerwise Laser Melting with Optical Process Monitoring[J]. Physics Procedia, 2012, 39:753-759.
[8]SCHMIDT R, UMETANI N. Branching Support Structures for 3D Printing[C]// International Conference on Computer Graphics and Interactive Techniques. New York, 2014:9.
[9]VANEK J, GALICIA J A G, BENES B. Clever Support: Efficient Support Structure Generation for Digital Fabrication[J]. Computer Graphics Forum, 2014,33(5):117-125.
[10]DUMAS J, HERGEL J, LEFEBVRE S. Bridging the Gap: Automated Steady Scaffoldings for 3D Printing[J]. ACM Transactions on Graphics, 2014,33(4):98.
[11]HUSSEIN A, HAO L, YAN C, et al. Advanced Lattice Support Structures for Metal Additive Manufacturing[J]. Journal of Materials Processing Technology, 2013, 213(7):1019-1026.
[12]CLOOTS M, SPIERINGS A, WEGENER K. Assessing New Support Minimizing Strategies for the Additive Manufacturing Technology SLM[C]// Solid Freeform Fabrication Symposium. Austin, 2013: 631-643.
[13]GAN M X, WONG C H. Practical Support Structures for Selective Laser Melting[J]. Journal of Materials Processing Technology, 2016, 238:474-484.
[14]MALEKIPOUR E, TOVAR A, EL-MOUNAYRI H. Heat Conduction and Geometry Topology Optimization of Support Structure in Laser-based Additive Manufacturing[J]. Mechanics of Additive and Advanced Manufacturing, 2018,9:17-27.
[15]姜献峰,宋荣伟,熊志越,等. 316L金属粉末选择性激光熔化瞬态温度场的模拟[J]. 应用激光, 2015, 35(6):648-651.
JIANG Xianfeng, SONG Rongwei, XIONG Zhiyue, et al. The Transient Simulation for Temperature Field of Selective Laser Melting of 316L Metal Powder[J]. Applied Laser, 2015, 35(6): 648-651.
[16]HUSSEIN A, HAO L, YAN C, et al. Finite Element Simulation of the Temperature and Stress Fields in Single Layers Built Without-support in Selective Laser Melting[J]. Materials & Design, 2013, 52:638-647.
[17]李佳桂, 史玉升, 鲁中良, 等. 选择性激光熔化成形瞬态温度场数值模拟[J]. 中国机械工程, 2008, 19(20):2492-2495.
LI Jiagui, SHI Yusheng, LU Zhongliang, et al. Numerical Simulation of Transient Temperature Field in Selective Laser Melting[J]. China Mechanical Engineering, 2008, 19(20):2492-2495.
[18]LIU Y, ZHANG J, PANG Z. Numerical and Experimental Investigation into the Subsequent Thermal Cycling during Selective Laser Melting of Multi-layer 316L Stainless Steel[J]. Optics & Laser Technology, 2018, 98:23-32.
[19]LI Y, GU D. Parametric Analysis of Thermal Behavior During Selective Laser Melting Additive Manufacturing of Aluminum Alloy Powder[J]. Materials & Design, 2014, 63:856-867.
[20]SIH S, BARLOW J. Measurement and Prediction of the Thermal Conductivity of Powders at High Temperatures[C]//Proceedings of the 5th Annual SFF Symposium. Austin, 1994:321-329. |