[1]OLAKANMI E O, COCHRANE R F, DALGARNO K W. A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties[J]. Progress in Materials Science, 2015, 74:401-477.
[2]PETZOLD S, KLETT J, SCHAUER A, et al. Surface Roughness of Polyamide 12 Parts Manufactured Using Selective Laser Sintering[J]. Polymer Testing, 2019, 80:106094.
[3]AHMED N. Direct Metal Fabrication in Rapid Prototyping:a Review[J]. Journal of Manufacturing Processes, 2019, 42:167-191.
[4]YOUSSEF A, HOLLISTER S J, DALTON P D. Additive Manufacturing of Polymer Melts for Implantable Medical Devices and Scaolds[J]. Biofabrication,2017,9(1):012002.
[5]于国庆,毕超. 3D打印参数对聚乳酸试样拉伸性能的影响[J]. 中国塑料, 2017, 31(11):125-129.
YU Guoqing, BI Chao. Effects of 3D Printing Parameters on Tensile Performance of PLA Printed Specimens[J]. China Plastics, 2017, 31(11):125-129.
[6]潘刚伟,杨静,孙其松,等. 3D打印用聚乳酸的改性及其应用研究进展[J]. 塑料, 2019, 48(3):31-35.
PAN Gangwei, YANG Jing, SUN Qisong, et al. Modification and Application Progress of 3D Printing Poly (Lactic Acid) Materials[J]. Plastic, 2019, 48(3):31-35.
[7]傅亚,程超,张兵兵,等. 高分子量聚乳酸用于SLS快速成型的研究[J]. 功能材料, 2010, 41(9):1667-1670.
FU Ya, CHENG Chao, ZHANG Bingbing, et al. Studies on the Selective Laser Sintering of High Molecular Weight Poly (D, L-Lactic Acid)[J]. Journal of Functional Materials, 2010, 41(9):1667-1670.
[8]潘腾,朱伟,闫春泽,等. 激光选区烧结3D打印成形生物高分子材料研究进展[J]. 高分子材料科学与工程, 2016, 32(3):178-183.
PAN Teng, ZHU Wei, YAN Chunze, et al. Selective Laser Sintering 3D Printing of Biomedical Polymer Materials[J]. Polymeric Materials Science and Engineering, 2016, 32(3):178-183.
[9]FUKUSHIMA K, FEIJOO J L, YANG M. Comparison of Abiotic and Biotic Degradation of PDLLA, PCL and Partially Miscible PDLLA/PCL Blend[J]. European Polymer Journal, 2013, 49(3):706-717.
[10]GORSHENEV V N . Method for Forming Porous Calcium-Phosphate Polymer Composites[J]. Russian Journal of Physical Chemistry B, 2019, 13(1):177-183.
[11]ZHANG Q, LIU F R, CHEN J M. Development of Porous Scaffolds Using Selective Laser Sintering of Polylactic Acid/ Hydroxyapatite for Bone Tissur Engineering[J]. Advanced Materials Research, 2011, 291/294:1399-1404.
[12]PEYRE P, ROUCHAUSSE Y, DEFAUCHY D, et al. Experimental and Numerical Analysis of the Selective Laser Sintering (SLS) of PA12 and PEKK Semi-crystalline Polymers[J]. Journal of Materials Processing Technology, 2015, 225:326-336.
[13]CHEN P, WU H Z, ZHU W, et al. Investigation into the Processability, Recyclability and Crystalline Structure of Selective Laser Sintered Polyamide 6 in Comparison with Polyamide 12[J]. Polymer Testing, 2018, 69:366-374.
[14]NAJAFI N, HEUZEY M C, CARREAU P J. Polylactide (PLA)-clay Nanocomposites Prepared by Melt Compounding in the Presence of a Chain Extender[J]. Composites Science and Technology, 2012, 72(5):608-615.
[15]YU W W, WANG X Z, FERRARIS E, et al. Melt Crystallization of PLA/Talc in Fused Filament Fabrication[J]. Materials & Design, 2019, 182:108013.
[16]LI M, CHEN A N, LIN X, et al. Lightweight Mullite Ceramics with Controlled Porosity and Enhanced Properties Prepared by SLS Using Mechanical Mixed FAHSs/Polyamide12 Composites[J]. Ceramics International, 2019, 45(16):20803-20809.
[17]郝妮媛,刘阳,邹俊. 聚乳酸β晶型的研究进展[J]. 江苏科技大学学报(自然科学版), 2015, 29(1):38-45.
HAO Niyuan, LIU Yang, ZOU Jun. Research Advances in Polylactide β-form[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2015, 29(1):38-45.
[18]DU Y Y, LIU H M, SHUANG J Q, et al. Microsphere-based Selective Laser Sintering for Building Macroporous Bone Scaffolds with Controlled Microstructure and Excellent Biocompatibility[J]. Colloids and Surfaces B:Biointerfaces, 2015, 135:81-89.
[19]LI J , LU X L , ZHENG Y F . Effect of Surface Modified Hydroxyapatite on the Tensile Property Improvement of HA/PLA Composite[J]. Applied Surface Science, 2008, 255(2):494-497. |