Previous Articles Next Articles
LI Yang;GUO Fei;LI Maoyuan;ZHANG Yun;LI Dequn
Online:
2020-11-25
Published:
2020-11-27
李阳;郭飞;李茂源;张云;李德群
基金资助:
CLC Number:
LI Yang, GUO Fei, LI Maoyuan, ZHANG Yun, LI Dequn. Intelligent Technology of Plastic Injection Molding and Its Applications[J]. China Mechanical Engineering, DOI: 10.3969/j.issn.1004-132X.2020.22.011.
李阳, 郭飞, 李茂源, 张云, 李德群. [成形过程的数据挖掘与深度学习方法]塑料注射成形智能技术及其应用[J]. 中国机械工程, DOI: 10.3969/j.issn.1004-132X.2020.22.011.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2020.22.011
[1]张洁. 制造业大数据[M].上海:上海科学技术出版社, 2016. ZHANG Jie. Big Data in Manufacturing[M]. Shanghai: Shanghai Science and Technology Press, 2016. [2]KOZJEK D, KRALJ D, BUTALA P, et al. A Data-driven Holistic Approach to Fault Prognostics in a Cyclic Manufacturing Process[J]. Procedia CIRP, 2017, 63: 664-669. [3]KRUTH J P, WILLEMS R. Intelligent Support System for the Design of Injection Moulds[J]. Journal of Engineering Design, 1994, 5(4): 339-351. [4]RAVIWONGSE R, ALLADA V. Artificial Neural Network Based Model for Computation of Injection Mould Complexity[J]. International Journal of Advanced Manufacturing Technology, 1997, 13(8): 577-586. [5]BRITTON G A, TOR S B, LAM Y C, et al. Mo-delling Functional Design Information for Injection Mould Design[J]. International Journal of Production Research, 2001, 39(12): 2501-2515. [6]ONG S K, PROMBANPONG S, LEE K S. An Object-oriented Approach to Computer-aided Design of a Plastic Injection Mould[J]. Journal of Intelligent Manufacturing, 1995, 6(1): 1-10. [7]IRANI R K, KIM B H, DIXON J R. Towards Automated Design of the Feed System of Injection Molds by Integrating CAE, Iterative Redesign and Features[J].Journal of Engineering for Industry,117(1):1-8. [8]NEE A Y C, FU M W, FUH J Y H, et al. Determination of Optimal Parting Directions in Plastic Injection Mold Design[J]. CIRP Annals, 1997, 46(1): 429-432. [9]CHEN L L, CHOU S Y, WOO T C. Partial Visibility for Selecting a Parting Direction in Mold and Die Design[J]. Journal of Manufacturing Systems, 1995, 14(5): 319. [10]PARK S J, KWON T H. Thermal and Design Sensitivity Analyses for Cooling System of Injection Mold, Part 1: Thermal Analysis[J]. The ASME Journal of Manufacturing Science and Engineering 1998,120(2):287-295. [11]王小军. 基于本体的注塑模具设计案例检索方法研究[D]. 广州:广东工业大学, 2015. WANG Xiaojun. Research on Injection Mold Design with Case Retrieval Base on Ontology[D]. Guangzhou: Guangdong University of Technology, 2015. [12]于同敏, 张享倩. 基于 CBR 的注塑模具侧向抽芯机构设计研究[J]. 塑料科技, 2012(5): 81-85. YU Tongmin, ZHANG Xiangqian. Study on the Design of Injection Mould Side Core-pulling Mechanism Based on CBR [J]. Plastic Science and Technology, 2012(5):81-85. [13]WANG V W, HIEBER C A, WANG K K. Dynamic Simulation and Graphics for the Injection Molding of Three-dimensional Thin Parts[J]. Journal of Polymer Engineering, 1986, 7(1): 21-45. [14]CHIANG H H, HIEBER C A, WANG K K. A Unified Simulation of the Filling and Postfilling Stages in Injection Molding. Part I: Formulation[J]. Polymer Engineering & Science, 1991, 31(2): 116-124. [15]HIMASEKHAR K, LOTTEY J, WANG K K. CAE of Mold Cooling in Injection Molding Using a Three-dimensional Numerical Simulation[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 1992, 114(2): 213-221. [16]BATOZ J L, LARDEUR P. A Discrete Shear Triangular Nine D.O.F. Element for the Analysis of Thick to Very Thin Plates[J]. International Journal for Numerical Methods in Engineering, 1989, 28(3): 533-560. [17]ISAYEV A I. Orientation, Residual Stresses, and Volumetric Effects in Injection Molding[M]∥Injection and Compression Molding Fundamentals. Routledge, 2018: 227-328. [18]PICHELIN E, COUPEZ T. A Taylor Discontinuous Galerkin Method for the Thermal Solution in 3D Mold Filling[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 178(1/2): 153-169. [19]LIU X, GUO F, ZHANG Y, et al. An Efficient Coupled Pressure-velocity Solver for Three-dimensional Injection Molding Simulation Using Schur Complement Preconditioned FGMRES[J]. Engineering Computations, 2019,36(4):1101-1120. [20]MLLER-PLATHE F. Coarse-graining in Polymer Simulation: from the Atomistic to the Mesoscopic Scale and Back[J]. Chem. Phys. Chem., 2002, 3(9): 754-769. [21]de GENNES P G. Reptation of a Polymer Chain in the Presence of Fixed Obstacles[J]. The Journal of Chemical Physics, 1971, 55(2): 572-579. [22]DOI M. Soft Matter Physics[M]. New York :Oxford University Press, 2013. [23]KWONG C K, SMITH G F, LAU W S. Application of Case Based Reasoning in Injection Moulding[J]. Journal of Materials Processing Technology, 1997, 63(1/3): 463-467. [24]MOK S L, KWONG C K, LAU W S. An Intelligent Hybrid System for Initial Process Parameter Setting of Injection Moulding[J]. International Journal of Production Research, 2000, 38(17): 4565-4576. [25]SHELESH-NEZHAD K, SIORES E. An Intelligent System for Plastic Injection Molding Process Design[J]. Journal of Materials Processing Technology, 1997, 63(1/3): 458-462. [26]HE W, ZHANG Y F, LEE K S, et al. Automated Process Parameter Resetting for Injection Moulding: a Fuzzy-neuro Approach[J]. Journal of Intelligent Manufacturing, 1998, 9(1): 17-27. [27]GAO Y, TURNG L S, WANG X. Adaptive Geometry and Process Optimization for Injection Molding Using the Kriging Surrogate Model Trained by Numerical Simulation[J]. Advances in Polymer Technology: Journal of the Polymer Processing Institute, 2008, 27(1): 1-16. [28]ZHOU H, ZHAO P, FENG W. An Integrated Intelligent System for Injection Molding Process Determination[J]. Advances in Polymer Technology: Journal of the Polymer Processing Institute, 2007, 26(3): 191-205. [29]LI D, ZHOU H, ZHAO P, et al. A Real-time Process Optimization System for Injection Molding[J]. Polymer Engineering & Science, 2009, 49(10): 2031-2040. [30]GUO F, ZHOU X, LIU J, et al. A Reinforcement Learning Decision Model for Online Process Parameters Optimization from Offline Data in Injection Molding[J]. Applied Soft Computing, 2019, 85: 105828. [31]CHEN W C, NGUYEN M H, CHIU W H, et al. Optimization of the Plastic Injection Molding Process Using the Taguchi Method, RSM, and Hybrid GA-PSO[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(9/12): 1873-1886. [32]ZHAO J, CHENG G. An Innovative Surrogate-based Searching Method for Reducing Warpage and Cycle Time in Injection Molding[J]. Advances in Polymer Technology, 2016, 35(3): 288-297. [33]KURTARAN H, ERZURUMLU T. Efficient Warpage Optimization of Thin Shell Plastic Parts Using Response Surface Methodology and Genetic Algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2006, 27(5/6): 468-472. [34]KITAYAMA S, YOKOYAMA M, TAKANO M, et al. Multi-objective Optimization of Variable Packing Pressure Profile and Process Parameters in Plastic Injection Molding for Minimizing Warpage and Cycle Time[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(9/12): 3991-3999. [35]张玲利. 多变量统计过程控制及其在注塑成型过程中的应用研究[D]. 北京: 北京化工大学, 2007. ZHANG Lingli. MSPC and Its Application in Injection Molding[D]. Beijing: Beijing University of Chemical Technology Press, 2007. [36]HE Bobing. Characterizing of Polymer Morphologies & in-situ Monitoring of Injection Molding Process Using Ultrasonic Techniques [D]. Chengdu: Sichuan University Press, 2007. [37]EDWARDS R, THOMAS C. On-line Measurement of Polymer Orientation Using Ultrasonic Technology[J]. Polymer Engineering & Science, 2001, 41(9): 1644-1653. [38]叶庆莹, 张逸, 沈关成,等. 碳纤维增强塑料的纤维取向介电测量方法[J]. 塑料工业, 2019(5):103-106. YE Qingying, ZHANG Yi, SHEN Guancheng, et al. Dielectric Method for Fiber Orientation Measurement of Carbon Fiber Reinforced Plastic[J]. China Plastics Industry, 2019(5):103-106. [39]RIBEIRO B. Support Vector Machines for Quality Monitoring in a Plastic Injection Molding Process[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2005, 35(3): 401-410. [40]周昊飞, 刘玉敏. 基于深度置信网络的大数据制造过程实时智能监控[J]. 中国机械工程, 2018, 29(10): 1201-1207. ZHOU Haofei, LIU Yumin. Real-time Intelligent Monitoring for Manufacturing Processes with Big Data Based on Deep Belief Networks[J]. China Mechanical Engineering, 2018, 29(10): 1201-1207. [41]MACGREGOR J, CINAR A. Monitoring, Fault Diagnosis, Fault-tolerant Control and Optimization: Data Driven Methods[J]. Computers & Chemical Engineering, 2012, 47: 111-120. [42]SPERANZA V, VIETRI U, PANTANI R. Monitoring of Injection Molding of Thermoplastics: Average Solidification Pressure as a Key Parameter for Quality Control[J]. Macromolecular Research, 2011, 19(6): 542. [43]LU H, PLATANIOTIS K N, VENETSANOPOULOS A N. MPCA: Multilinear Principal Component Analysis of Tensor Objects[J]. IEEE Transactions on Neural Networks, 2008, 19(1): 18-39. [44]ZHANG S, DUBAY R, CHAREST M. A Principal Component Analysis Model-based Predictive Controller for Controlling Part Warpage in Plastic Injection Molding[J]. Expert Systems with Applications, 2015, 42(6): 2919-2927. [45]GE Z, YANG C, SONG Z. Improved Kernel PCA-based Monitoring Approach for Nonlinear Processes[J]. Chemical Engineering Science, 2009, 64(9): 2245-2255. [46]HOFFMANN H. Kernel PCA for Novelty Detection[J]. Pattern Recognition, 2007, 40(3): 863-874. [47]CHEN W C, TAI P H, WANG M W et al. A Neural Network-based Approach for Dynamic Quality Prediction in a Plastic Injection Molding Process[J]. Expert Systems with Applications, 2008, 35(3): 843-849. [48]YANG Y, GAO F. Adaptive Control of the Filling Velocity of Thermoplastics Injection Molding[J]. Control Engineering Practice, 2000, 8(11): 1285-1296. [49]DUBAY R, HU B, HERNANDEZ J M, et al. Controlling Process Parameters during Plastication in Plastic Injection Molding Using Model Predictive Control[J]. Advances in Polymer Technology, 2014, 33(S1):21449. [50]RUAN Y, ZHANG Y, MAO T ,et al. Trajectory Optimization and Positioning Control for Batch Process Using Learning Control[J]. Control Engineering Practice, 2019, 85: 1-10. [51]HOPMANN C, ABEL D, HEINISCH J ,et al. Self-optimizing Injection Molding Based on Iterative Learning Cavity Pressure Control[J]. Production Engineering, 2017, 11(2): 97-106. [52]ZHANG Y, XI D, YANG H, et al. Cloud Manufacturing Based Service Encapsulation and Optimal Configuration Method for Injection Molding Machine[J]. Journal of Intelligent Manufacturing, 2019, 30(7): 2681-2699. [53]LI Z, LIU X, WANG W M, et al. CKshare: Secured Cloud-based Knowledge-sharing Blockchain for Injection Mold Redesign[J]. Enterprise Information Systems, 2019, 13(1): 1-33. |
[1] | ZHANG Lifeng, ZHANG Xiaoguang. Machining Performance and Material Removal Mechanism of High-speed Milling of CFRP with Variable Angle under Minimal Quantity Lubrication [J]. China Mechanical Engineering, 2023, 34(21): 2622-2628. |
[2] | YANG Liang, CAI Guixi, LIU Fang, LI Jiankui. Ultrasonic Nondestructive Testing and Evaluation of CFRP Hole-making Structures [J]. China Mechanical Engineering, 2023, 34(19): 2327-2332. |
[3] | DU Kai, REN Yanqiang, HOU Yong, LI Xiaoqiang, CHEN Shuaifeng, SUN Liang, ZUO Xiaojiao, YUAN Xiaoguang. Parameter Identification Strategy of Yield Criterion for Accurately Predicting Anisotropic Behaviors under Near Plane Strain Loading [J]. China Mechanical Engineering, 2023, 34(19): 2381-2393. |
[4] | LIU Ying, CHEN Yue, ZHAO Xueli, YU Tongmin, ZHU Tieli, . Study on Properties of Ultrasonic-assisted Injection Molding of Carbon Fiber-reinforced Polypropylene Parts [J]. China Mechanical Engineering, 2023, 34(16): 1975-1981. |
[5] | LIU Yao, CHEN Gaige, LIU Zhenguo, KONG Xianguang, CHANG Jiantao. Health Assessment Method of Shield Machine Cutterheads Driven by Association Rule Mining [J]. China Mechanical Engineering, 2023, 34(11): 1326-1334,1342. |
[6] | ZHOU Danyan, HUANG Hanxiong, LUO Duyu. Performance Improvement of Flexible Pressure Sensors by Dual-level Microstructure [J]. China Mechanical Engineering, 2023, 34(06): 720-726. |
[7] | ZHENG Zhilong, ZHAO Yugang, LIU Qian, WANG Ke, ZHOU Haian, SONG Zhuang, DAI Di, ZHANG Xiajunyu. Experimental Study on Water Jet Guided Laser Processing of CFRPs [J]. China Mechanical Engineering, 2023, 34(03): 344-351. |
[8] | ZHANG Lijun, YANG Ning, LI Zhishun, TAO Jishao, XU Jiayi, LI Fan, ZHAO Shengdun, . Progresses and Applications of Counter-roller Spinning Technology for Metal Thin-walled Cylinders [J]. China Mechanical Engineering, 2023, 34(02): 226-237. |
[9] | SHEN Mingxue, RONG Bin, LI Shengxin, ZHAO Huoping, JI Dehui, XIONG Guangyao. Effects of Wheel Tread Out-of-roundness on Wheel-rail Interface Adhesions and Wheel Surface Damages of High-speed Trains#br# [J]. China Mechanical Engineering, 2022, 33(22): 2664-2672,2683. |
[10] | TAO Shuangquan, HAO Xiaozhong, YANG Zijian, LIU Shuting. Hybrid of Self-resistance Electric Heating and In-situ Membrane Heating of CF/PEEK Composites Consolidation [J]. China Mechanical Engineering, 2022, 33(22): 2748-2754. |
[11] | XU Yameng, ZHOU Hai, ZHANG Jiequn, REN Xiangpu, ZHANG Chunwei. Experimental Study of Micro Scale Mechanics Behavior of Cleavable Gallium Oxide Crystals [J]. China Mechanical Engineering, 2022, 33(18): 2234-2240. |
[12] | QIAN Yingping, XUE Hang, MEI Jianliang. Research on On-line Quality Monitoring Method for Injection Molding Products of Crystalline Plastic [J]. China Mechanical Engineering, 2022, 33(09): 1073-1076,1083. |
[13] | YU Guoda, LIU Huaiju, LU Zehua, WEI Peitang. Simulation and Experimental Study of Steady-state Temperature Field of Plastic Gears under Grease Lubrication Conditions#br# [J]. China Mechanical Engineering, 2022, 33(08): 890-898,907. |
[14] | LIU Yongxing, TANG Xiaoqi, ZHONG Jinglong, ZHONG Zhenyu, ZHOU Xiangdong. Asymmetric Risk Injection Molding Product Size Prediction Model Based on LightGBM#br# [J]. China Mechanical Engineering, 2022, 33(08): 965-969. |
[15] | LI Huan, HUANG Chaowang, ZHOU Kang, ZHANG Changxin, ZENG Caiyou. Numerical Simulation and Experimental Verification of High-power Ultrasonic Welding of Al/Steel Joints [J]. China Mechanical Engineering, 2022, 33(02): 226-233. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||