[1]KLINE J L, CALLAHAN D A, GLENZER S H, et al. Hohlraum Energetics Scaling to 520TW on the National Ignition Facility[J]. Physics of Plasmas, 2013, 20(5): 10.1063/1.4803907.
[2]LI Y, YE H, YUAN Z, et al. Generation of Scratches and Their Effects on Laser Damage Performance of Silica Glass[J]. Scientific Reports, 2016, 6: 10.1038/srep34818.
[3]SURATWALA T, STEELE W, WONG L, et al. Chemistry and Formation of the Beilby Layer during Polishing of Fused Silica Glass[J]. Journal of the American Ceramic Society, 2015, 98(8): 2395-2402.
[4]LI C, JU X, JIANG X, et al. High Resolution Characterization of Modifications in Fused Silica after Exposure to Low Fluence 355nm Laser at Different Repetition Frequencies[J]. Optics Express, 2011, 19(7): 6439-6449.
[5]LIU H, HUANG J, WANG F, et al. Subsurface Defects of Fused Silica Optics and Laser Induced Damage at 351nm[J]. Optics Express, 2013, 21(10): 12204-12217.
[6]FEIT M, RUBENCHIK A. Intrinsic Laser-induced Breakdown of Silicate Glasses[J]. Proceedings of SPIE, 2002,4679(10): 321-330.
[7]BUDE J, MILLER P, BAXAMUSA S, et al. High Fluence Laser Damage Precursors and Their Mitigation in Fused Silica[J]. Optics Express, 2014, 22(5): 5839-5851.
[8]PAPERNOV S, SCHMID A W. Laser-induced Surface Damage of Optical Materials: Absorption Sources, Initiation, Growth, and Mitigation[J]. Proceedings of SPIE, 2008, 7132: 10.1117/12.804499.
[9]GAO X, FENG G, CHEN N, et al. Investigation of Laser-induced Damage by Nanoabsorbers at the Surface of Fused Silica[J]. Applied Optics, 2012, 51(51): 2463-2470.
[10]GAO X, FENG G, HAN J, et al. Investigation of Laser-induced Damage by Various Initiators on the Subsurface of Fused Silica[J]. Optics Express, 2012, 20(20): 10.1364/OE.20.022095.
[11]MESSINA F, CANNAS M. Photochemical Generation of E’ centres from Si-H in Amorphous SiO2 under Pulsed Ultraviolet Laser Radiation[J]. Journal of Physics: Condensed Matter, 2006, 18(43): 9967-9973.
[12]GUIZARD S, MARTIN P, PETITE G, et al. Time-resolved Study of Laser-induced Colour Centres in SiO2[J]. Journal of Physics: Condensed Matter., 1996, 8(9): 1281-1290.
[13]ALESSI A, FANETTI M, AGNELLO S, et al. Ge-doped Silica Nanoparticles: Production and Characterization[J]. Optical Materials Express, 2016, 6(7): 2213-2220.
[14]YE X, HUANG J, LIU H, et al. Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics[J]. Scientific Reports, 2016, 6: 10.1038/srep31111.
[15]VACCARO L, CANANS M, RADZIG V, et al. Luminescence of the Surface Nonbridging Oxygen Hole Center in Silica: Spectral and Decay Properties[J]. Physical Review B, 2008, 78(7): 10.1103/PhysRevB.78.075421.
[16]CHMEL A, ERONKO S B. Optical Strength of Glasses Implanted with Argon Ions[J]. Glass Technology, 1998, 39(1): 32-34.
[17]WONG J, FERRIERA J L, LINDSEY E F, et al. Morphology and Microstructure in Fused Silica Induced by High Fluence Ultraviolet 3w (355 nm) Laser Pulses[J]. Journal of Non-Crystalline Solids, 2006, 352: 255-272.
[18]KUCHEYEV S O, DEMOS S G. Optical Defects Produced in Fused Silica during Laser-induced Breakdown[J]. Appl. Phys. Lett., 2003, 82(19): 3230-3232.
[19]陈习权,祖小涛,郑万国,等. 表面热透镜技术测试光学薄膜特性研究[J]. 光学与光电技术, 2005, 3(1): 53-57.
CHEN Xiquan, ZU Xiaotao, ZHENG Wanguo, et al. Application Research of STL Technique in photoelectric Testing of Thin Film Characterization[J]. Optics & Optoelectronic Technology, 2005, 3(1): 53-57.
[20]胡海洋.光学薄膜强激光热力耦合损伤研究[D]. 上海:中国科学院上海光学精密机械研究所,2001.
HU Haiyang. Study of Laser Induced Damage of Optical Thin Film Coatings[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, the Chinese Academy of Sciences, 2001.
[21]SHI F, ZHONG Y, DAI Y, et al. Investigation of Surface Damage Precursor Evolutions and Laser-induced Damage Threshold Improvement Mechanism during Ion Beam Etching of Fused Silica[J]. Optics Express, 2016, 24(18): 20842-20854.
[22]NEAUPORT J, LAMAIGERE L, BERCEGOL H. Polishing-induced Contamination of Fused Silica Optics and Laser Induced Damage Density at 351nm[J]. Optics Express, 2005, 13 (25): 10163-10171.
[23]MENAPACE J A, DAVIS P J, STEELE W A, et al. MRF Applications: Measurement of Process-dependent Subsurface Damage in Optical Materials Using the MRF Wedge Technique[J]. Proceedings of SPIE, 2005, 5991: 39-49.
[24]许乔,王健,马平,等. 先进光学制造技术进展[J]. 强激光与粒子束, 2013, 25(2): 3098-3015.
XU Qiao, WANG Jian, MA Ping, et al. Progress of Advanced Optical Manufacturing Technology[J]. High Power Laser and Particle Beams, 2013, 25(2): 3098-3015.
[25]SHI F, SHU Y, DAI Y, et al. Magnetorheological Elastic Super-smooth Finishing for High-efficiency Manufacturing of Ultraviolet Laser Resistant Optics[J]. Optical Engineering, 2013, 52(7):1-9.
[26]MENAPACE J A. Developing Magnetorheological Finishing (MRF) Technology for the Manufacture of Large-aperture Optics in Megajoule Class Laser Systems[J]. Proceedings of SPIE, 2010, 7842: 10.1117/12.855603.
[27]石峰, 万稳, 戴一帆, 等. 磁流变抛光对熔石英激光损伤特性的影响[J]. 光学精密工程, 2016, 24(12): 2931-2937.
SHI Feng, WAN Wen, DAI Yifan, et al. Effect of Magnetorheological Polishing on Laser Damage Characteristics of Fused Silica[J].Optics and Precision Engineering, 2016, 24(12): 2931-2937.
[28]隋婷婷,戴一帆,石峰,等. 基于杂质元素控制工艺降低熔石英元件损伤密度实验研究[J]. 航空精密制造技术, 2015, 51(2): 9-12.
SUI Tingting, DAI Yifan, SHI Feng, et al. Experimental Study on Reducing the Damage Density of Fused Silica Element Based on Impurity Element Control Technology[J]. Aviation Precision Manufacturing Technology, 2015, 51(2):9-12.
[29]SURATWALA K T, WONG L, MILLER P, et al. Sub-surface Mechanical Damage Distributions during Grinding of Fused Silica[J]. Journal of Non-Crystalline Solids, 2006, 352(52/54): 5601-5617.
[30]WONG L, SURATWALA T, FEIT M D, et al. The Effect of HF-NH4F Etching on the Morphology of Surface Fractures on Fused Silica[J]. Journal of Non-Crystalline Solids, 2009, 355: 797-810.
[31]FEIT M D, SURATWALA T I, WONG L L, et al. Modeling Wet Chemical Etching of Surface Flaws on Fused Silica[J]. Proceedings of SPIE, 2009, 7504: 10.1117/12.836912.
[32]ZHENG Z, ZU X, JIANG X, et al. Effect of HF Etching on the Surface Quality and Laser-induced Damage of Fused Silica[J]. Optics & Laser Technology, 2012, 44: 1039-1042.
[33]王凤蕊, 郑直, 刘红婕, 等. HF酸刻蚀提升熔石英亚表面划痕抗损伤性能的机理[J]. 光子学报, 2012, 41(3): 523-527.
WANG Fengrui, ZHENG Zhi, LIU Hongjie, et al. Mechanism of Improving Scratch Resistance of Fused Quartz Sub Surface by HF Acid Etching[J]. Acta Photonica Sinica, 2012, 41(3): 523-527.
[34]YAMAUCHI K, HIROSE K, GOTO H, et al. First-principles Simulation of Removal Process in EEM(Elastic Emission Maching)[J]. Computation Materials Science, 1999, 14: 232-235.
[35]SHIMIZU J, ZHOU L, YAMAMOTO T. Molecular Dynamics Simulation of Chemical Reaction Assisted Grinding of Silicon Wafer by Controlling Interatomic Potential Parameters[J]. Journal of Computational and Theoretical Nanoscience, 2010, 7:1-6.
[36]SONG X Z, ZHANG Y, ZHANG F H. Study on Removal Mechanism of Nanoparticle Colloid Jet Machining[J]. Advanced Materials Research, 2008, 53/54: 363-368.
[37]LIAO W, DAI Y, LIU Z, et al. Detailed Subsurface Damage Measurement and Efficient Damage-free Fabrication of Fused Silica Optics Assisted by Ion Beam Sputtering[J]. Optics Express, 2016, 24(4): 4247-4257.
[38]KAMIMURA T, AKAMATSU S, YAMAMOTO M, et al. Enhancement of Surface-damage Resistance by Removing a Subsurface Damage in Fused Silica[J]. Proceedings of SPIE, 2004, 5273: 244-249.
[39]YAN Z, LIAO W, ZHANG Y, et al. Optical Characterization and Laser Damage of Fused Silica Optics after Ion Beam Sputtering[J]. Optik, 2014, 125: 756-760.
[40]CHEN S, LI S, PENG X, et al. Research of Polishing Process to Control the Iron Contamination on the Magnetorheological Finished KDP Crystal Surface[J]. Applied Optics, 2015, 54(6): 1478-1484.
[41]XU M, DAI Y, ZHOU L, et al. Investigation of Surface Characteristics Evolution and Laser Damage Performance of Fused Silica during Ion-beam Sputtering[J]. Optical Materials, 2016, 58:151-157.
[42]ZHONG Y, DAI Y, SHI F, et al. Effects of Ion Beam Etching on the Nanoscale Damage Precursor Evolution of Fused Silica[J]. Materials, 2020, 13: 10.3390/ma13061294.
[43]SUN L, LIU H, HUANG J, et al. Reaction Ion Etching Process for Improving Laser Damage Resistance of Fused Silica Optical Surface[J]. Optics Express, 2016, 24(1): 199-211.
[44]XU M, SHI F, ZHOU L, et al. Investigation of Laser-induced Damage Threshold Improvement Mechanism during Ion Beam Sputtering of Fused Silica[J]. Optics Express, 2017, 25(23): 29260-29271. |