[1]张洁,汪俊亮,吕佑龙,等.大数据驱动的智能制造[J].中国机械工程,2019,30(2):127-133.
ZHANG Jie, WANG Junliang, LYU Youlong, et al. Big Data on Intelligent Manufacturing[J]. China Mechanical Engineering, 2019, 30(2):127-133.
[2]林诗洁,董晨,陈明志,等.新型群智能优化算法综述[J]. 计算机工程与应用. 2018,54(12):1-9.
LIN Shijie, DONG Chen, CHEN Mingzhi, et al. Summary of New Group Intelligent Optimization Algorithm[J]. Computer Engineering and Applications, 2018, 54(12):1-9.
[3]HUANG Xiaobo, YANG Lixi. A Hybrid Genetic Algorithm for Multi-objective Flexible Job Shop Scheduling Problem Considering Transportation Time[J]. International Journal of Intelligent Computing and Cybernetics, 2019, 12(2):154-174.
[4]SOUIER M, DAHANE M, MALIKI F. An NSGA-Ⅱ-based Multiobjective Approach for Real-time Routing Selection in a Flexible Manufacturing System under Uncertainty and Reliability Constraints[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(9/12):2813-2829.
[5]ZHANG R, CHINONG R. Solving the Energy-efficient Job Shop Scheduling Problem:a Multi-objective Genetic Algorithm with Enhanced Local Search for Minimizing the Total Weighted Tardiness and Total Energy Consumption[J]. Journal of Cleaner Production, 2016, 112:3361-3375.
[6]SHEIKHALISHAHI M, ESKANDARI N, MAS-HAYEKHI A, et al. Multi-objective Open Shop Scheduling by Considering Human Error and Preventive Maintenance[J]. Applied Mathematical Modelling, 2019, 67:573-587.
[7]LU Chao, GAO Liang, PAN Quanke, et al. A Multi-objective Cellular Grey Wolf Optimizer for Hybrid Flowshop Scheduling Problem Considering Noise Pollution[J]. Applied Soft Computing, 2019, 75:728-749.
[8]QIN Hongbin, FAN Pengfei, TANG Hongtao, et al. An Effective Hybrid Discrete Grey Wolf Optimizer for the Casting Production Scheduling Problem with Multi-objective and Multi-constraint[J]. Computers & Industrial Engineering, 2019, 128:458-476.
[9]ZHOU Yong, YANG Jianjun, ZHENG Lianyu. Multi-agent Based Hyper-heuristics for Multi-objective Flexible Job Shop Scheduling:a Case Study in an Aero-engine Blade Manufacturing Plant[J]. IEEE Access, 2019, 7:21147-21176.
[10]FU Yaping, WANG Hongfeng, HUANG Min. Integrated Scheduling for a Distributed Manufacturing System:a Stochastic Multi-objective Model[J]. Enterprise Information Systems, 2019, 13(4):557-573.
[11]LI X N, OLAFSSON S. Discovering Dispatching Rules Using Data Mining[J]. Journal of Scheduling, 2005, 8(6):515-527.
[12]JUN S, LEE S, CHUN H. Learning Dispatching Rules Using Random Forest in Flexible Job Shop Scheduling Problems[J]. International Journal of Production Research, 2019, 57(10):3290-3310.
[13]KUMAR S, RAO C S P. Application of Ant Colony, Genetic Algorithm and Data Mining-based Techniques for Scheduling[J]. Robotics and Computer-Integrated Manufacturing, 2009, 25(6):901-908.
[14]NASIRI M M, SALESI S, RAHBARI A, et al. A Data Mining Approach for Population-based Methods to Solve the JSSP[J]. Soft Computing, 2019, 23(21):11107-11122.
[15]CAI Yandong. Attribute-oriented Induction in Relational Databases, Knowledge Discovery in Databases[D]. Burnaby:Simon Fraser University, 1989.
[16]KOONCE D A, TSAI S C. Using Data Mining to Find Patterns in Genetic Algorithm Solutions to a Job Shop Schedule[J]. Computers & Industrial Engineering, 2000, 38(3):361-374.
[17]LAWRENCE S. An Experimental Investigation of Heuristic Scheduling Techniques[D]. Pittsburgh:Carnegie-Mellon University, 1984.
[18]DEB K, PRATAP A, AGARWAL S, et al. A Fast and Elitist Multiobjective Genetic Algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
[19]KIRKPATRICK S, GELATT C D, VECCHI M P. Optimization by Simulated Annealing[J]. Science, 1983, 4598(220):671-680.
[20]ARROYO J E C, LEUNG J Y T. An Effective Iterated Greedy Algorithm for Scheduling Unrelated Parallel Batch Machines with Non-identical Capacities and Unequal Ready Times[J]. Computers & Industrial Engineering, 2017, 105:84-100.
[21]ZITZLER E, THIELE L. Multiobjective Evolutionary Algorithms:a Comparative Case Study and the Strength Pareto Approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4):257-271.
[22]SCHOTT J R. Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization[D]. Boston:Massachusetts Institute of Technology, 1995.
[23]COBOS C, ERAZO C, LUNA J, et al. Multi-objective Memetic Algorithm Based on NSGA-Ⅱ and Simulated Annealing for Calibrating CORSIM Micro-simulation Models of Vehicular Traffic Flow[C]∥ Conference of the Spanish Association for Artificial Intelligence.Cham:Springer, 2016:468-476. |