[1]陈海生,凌浩恕,徐玉杰.能源革命中的物理储能技术[J].中国科学院院刊,2019,34(4):450-459.
CHEN Haisheng, LING Haoshu, XU Yujie. Physical Energy Storage Technology in the Energy Revolution[J]. Bulletin of the Chinese Academy of Sciences, 2019,34(4):450-459.
[2]贾谦,李跃宗,陈润霖, 等.面向高速工况的轴承材料成形工艺[J].中国机械工程,2014,25(21):2860-2864.
JIA Qian, LI Yuezong, CHEN Runlin, et al. Forming Process of Bearing Materials Suitable for High-speed Bearings[J]. China Mechanical Engineering, 2014, 25(21): 2860-2864.
[3]林良真,张金龙,李传义,等.超导电性及其应用[M].北京:北京工业大学出版社,1998.
LIN Liangzhen, ZHANG Jinlong, LI Chuanyi, et al. Superconductivity Application[M]. Beijing: Beijing University of Technology Press, 1998.
[4]BEDORZ J, MULLER K. Possible High-Tc Superconductivity in the Ba-La-Cu-O System[J]. Zeitschrift für Physik B Condensed Matter, 1986, 64(2):189-193
[5]WU M, ASHBURN J, TORNG C, et al. Superconductivity at 93 K in a New Mixed-phase Yb-Ba-Cu-O Compound System at Ambient Pressure[J]. Physical Review Letters,1987,58(9): 908-910.
[6]ZHAO Z X, CHEN L Q, YANG Q, et al. Superconductivity above Liquid Nitrogen Temperature in New Oxide Systems[J]. Science Bulletin, 1987(16): 1098-1102.
[7]BARDEEN J, COOPER L, SCHRIEFFER J. Theory of Superconductivity[J]. Physical Review, 1957, 108(5): 1175-1204.
[8]KOSHIZUKAN. R&D of Superconducting Bearing Technologies for Flywheel Energy Storage Systems [J]. Physica C, 2006,445/448(1):1103-1108.
[9]WERFEL F, DELOR U, RIEDEL T, et al. 250 kW Flywheel with HTS Magnetic Bearing for Industrial Use[J]. Journal of Physics, 2008, 97(1):1-8.
[10]MUKOYAMA S, MATSUOKA T, FURUKAWA M, et al. Development of REBCO HTS Magnet of Magnetic Bearing for Large Capacity Flywheel Energy Storage System[J]. Physics Procedia, 2015, 65:253-256.
[11]XU J M, CHEN R L, HONG H L, et al. Static Characteristics of High-temperature Superconductor and Hydrodynamic Fluid-film Compound Bearing for Rocket Engine[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(3):1-5.
[12]XU J M, YUAN X Y, ZHANG C P, et al. Dynamic Characteristics of High Temperature Superconductor and Hydrodynamic Fluid Film Compound Bearing for Rocket Engine[C]∥12th European Conference on Applied Superconductivity. Lyon, 2015: EUCAS-15_3A-LS-P-04.02.
[13]王健,戴兴建,李奕良.飞轮储能系统轴承技术研究新进展[J].机械工程师, 2008(4): 71-73.
WANG Jian, DAI Xingjian, LI Yiliang. Progress of Bearing Technology for Flywheel Energy Storage System[J]. Mechanical Engineer, 2008(4):71-73.
[14]赵思锋,唐英伟,张建平,等. GTR飞轮储能系统特性研究[J]. 电器与能效管理技术, 2019(1):75-81.
ZHAO Sifeng, TANG Yingwei, ZHANG Jianping, et al. Study of Technical Performance for GTR Flywheel Energy Storage System[J]. Electrical & Energy Management Technology, 2019(1):75-81.
[15]祝长生,纪德志. 复合结构高温超导推力轴承的静态特性[J]. 润滑与密封,2008(7):12-15.
ZHU Changsheng, JI Dezhi. Static Behavior of a Complex High Temperature Superconductor Thrust Bearings[J]. Lubrication Engineering, 2008(7): 12-15.
[16]王建磊,王晓虎,张琛,等.机械密封润滑膜分布的超声检测技术[J].中国机械工程,2019,30(6):684-689.
WANG Jianlei, WANG Xiaohu, ZHANG Chen, et al. Distribution Detection Method of Film Thickness in Mechanical Seal Based on Ultrasonic Principle[J]. China Mechanical Engineering, 2019,30(6):684-689.
[17]张国渊. 高速涡轮泵低黏度介质润滑特性及转子稳定性研究[D]. 西安:西安交通大学,2009.
ZHANG Guoyuan. Research on the Low Viscosity Lubricating Performance and Rotor System Stability of High-Speed Turbopumps[D]. Xian: Xian Jiaotong University, 2009.
[18]BEAN C P. Magnetization of High-field Superconductors[J]. Reviews of Modern Physics, 1964, 36:31-39. |