[1]于德介,杨宇,程军圣.一种基于SVM和EMD的齿轮故障诊断方法[J]. 机械工程学报,2005,41(1):140-144.
YU Dejie, YANG Yu, CHENG Junsheng. Fault Diagnosis Approach Based on EMD and SVM[J]. Journal of Mechanical Engineering, 2005,41(1):140-144.
[2]程军圣,史美丽,杨宇. 基于LMD与神经网络的滚动轴承故障诊断方法[J]. 振动与冲击,2010, 29(8): 141-144.
CHENG Junsheng, SHI Meili, YANG Yu. Roller Bearing Fault Diagnosis Method Based on LMD and Neural Network[J]. Journal of Vibration and Shock, 2010, 29(8):141-144.
[3]JIA F, LEI Y, LIN J, et al. Deep Neural Networks: a Promising Tool for Fault Characteristic Mining and Intelligent Diagnosis of Rotating Machinery with Massive Data[J]. Mechanical Systems and Signal Processing, 2016, 72: 303-315.
[4]JING L, ZHAO M, LI P, et al. A Convolutional Neural Network Based Feature Learning and Fault Diagnosis Method for the Condition Monitoring of Gearbox[J]. Measurement, 2017, 111: 1-10.
[5]CHANG C C, LIN C J. LIBSVM: a Library for Support Vector Machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 27.
[6]ZENG M, YANG Y, ZHENG J, et al. Maximum Margin Classification Based on Flexible Convex Hulls for Fault Diagnosis of Roller Bearings[J]. Mechanical Systems and Signal Processing, 2016, 66: 533-545.
[7]CEVIKALP H. Large Margin Classifier Based on Hyperdisks[C]∥International Conference on Machine Learning & Applications & Workshops. Honolulu, 2011:370-375.
[8]CEVIKALP H, TRIGGS B, YAVUZ H S, et al. Large Margin Classifiers Based on Affine Hulls[J]. Neurocomputing, 2010, 73(16/18):3160-3168.
[9]WU T F, LIN C J, WENG R C. Probability Estimates for Multi-class Classification by Pairwise Coupling[J]. Journal of Machine Learning Research, 2004, 5: 975-1005.
[10]胡智勇,胡杰鑫,谢里阳,等. 滚动轴承振动信号处理方法综述[J]. 中国工程机械学报,2016, 14(6): 525-531.
HU Zhiyong, HU Jiexing, XIE Liyang, et al. Review on Signal Processing for Rolling Bearings Vibrations[J]. Chinese Journal of Construction Machinery, 2016, 14(6): 525-531.
[11]DE SIQUEIRA F R, SCHWARTZ W R, PEDRINI H. Multi-scale Gray Level Co-occurrence Matrices for Texture Description[J]. Neurocomputing, 2013, 120(10): 336-345.
[12]ZHENG G, LI X, ZHOU L, et al. Development of a Gray-level Co-occurrence Matrix-based Texture Orientation Estimation Method and Its Application in Sea Surface Wind Direction Retrieval from SAR Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9):1-17.
[13]丛蕊,高光甫,樊瑞筱,等. 基于灰度-梯度共生矩阵和模糊核聚类的振动图形识别方法[J]. 振动与冲击,2012, 31(21):73-76.
CONG Rui, GAO Guangfu, FAN Ruixiao, et al. Vibration Image Recognition Method Based on Gray-gradient Co-occurrence Matrix and Kernel-based Fuzzy Clustering[J]. Journal of Vibration and Shock, ,2012,31(21):73-76.
[14]章立军, 刘博, 张彬,等. 基于时频图像融合的轴承性能退化特征提取方法[J]. 机械工程学报,2013, 49(22): 53-58.
ZHANG Lijun, LIU Bo, ZHANG Bin, et al. Feature Extraction Method of Bearings Performance Degradation Based on Time-frequency Image Fusion[J]. Journal of Mechanical Engineering, 2013, 49(22):53-58.
[15]蔡艳平,李艾华,何艳萍,等. 基于振动谱时频图像特征及SVM参数同步优化识别的内燃机故障诊断[J]. 内燃机学报,2012,30(4):377-383.
CAI Yanping, LI Aihua, HE Yanping, et al. ICE Fault Diagnosis Method Based on Vibration Spectrum Time-frequency Image Feature and SVM Parameters Synchronization Optimization Recognition[J]. Transactions of CSICE, 2012,30(4):377-383.
[16]艾树峰. 基于多尺度Hermitian小波包络谱的轴承故障诊断[J]. 中国机械工程,2012, 23(1): 34-38.
AI Shufeng. Bearing Fault Diagnosis Based on Multi-scale Hermitian Wavelet Envelope Spectrum[J]. China Mechanical Engineering, 2012, 23(1):34-38.
[17]段晨东,张荣. 基于改进经验小波变换的机车轴承故障诊断[J]. 中国机械工程,2019, 30(6): 631-637.
DUAN Chendong, ZHANG Rong. Locomotive Bearing Fault Diagnosis Using an Improved Empirical Wavelet Transform[J]. China Mechanical Engineering, 2019, 30(6): 631-637.
[18]LIN J, QU L. Feature Extraction Based on Morlet Wavelet and Its Application for Mechanical Fault Diagnosis[J]. Journal of Sound and Vibration, 2000, 234(1): 135-148. |