[1]陈向民,张亢,晋风华,等. 基于时变零相位滤波的变转速滚动轴承故障诊断[J]. 中国机械工程,2018,29(2):177-185.
CHEN Xiangmin, ZHANG Kang, JIN Fenghua, et al. Fault Diagnosis Method for Rolling Bearings under Variable Rotate Speed Based on Time-varying Zero-phase Filter[J]. China Mechanical Engineering, 2018, 29(2):177-185.
[2]胥永刚,张志新,马朝永,等. 改进奇异谱分解及其在轴承故障诊断中的应用[J]. 振动工程学报,2019,32(3):540-547.
XU Yonggang, ZHANG Zhixin, MA Chaoyong, et al. Improved Singular Spectrum Decomposition and Its Applications in Rolling Bearing Fault Diagnosis[J]. Journal of Vibration Engineering, 2019, 32(3):540-547.
[3]李从志,郑近德,潘海洋,等. 基于精细复合多尺度散布熵与支持向量机的滚动轴承故障诊断方法[J]. 中国机械工程,2019,30(14):1713-1719.
LI Congzhi, ZHENG Jinde, PAN Haiyang, et al. Fault Diagnosis Method of Rolling Bearings Based on Refined Composite Multiscale Dispersion Entropy and Support Vector Machine[J]. China Mechanical Engineering, 2019, 30(14):1713-1719.
[4]HUO Zhiqiang, ZHANG Yu, SHU Lei, et al. A New Bearing Fault Diagnosis Method Based on Fine-to-coarse Multiscale Permutation Entropy, Laplacian Score and SVM[J]. IEEE Access, 2019, 7: 2169-3536.
[5]冯辅周,司爱威,饶国强,等. 基于小波相关排列熵的轴承早期故障诊断技术[J]. 机械工程学报,2012,48(13):73-79.
FENG Fuzhou, SI Aiwei, RAO Guoqiang, et al. Early Fault Diagnosis Technology for Bearing Based on Wavelet Correlation Permutation Entropy[J]. Journal of Mechanical Engineering, 2012, 48(13):73-79.
[6]XIA Jianan, SHANG Pengjian, WANG Jing, et al. Permutation and Weighted-permutation Entropy Analysis for the Complexity of Nonlinear Time Series[J]. Communications in Nonlinear Science and Numerical Simulation, 2016, 31(1/3):60-68.
[7]ZHOU Shenghan, QIAN Silin, CHANG Wenbing, et al. A Novel Bearing Multi-fault Diagnosis Approach Based on Weighted Permutation Entropy and an Improved SVM Ensemble Classifier[J]. Sensors, 2018, 18(6):1934.
[8]YIN Yi, SHANG Pengjian. Weighted Multiscale Permutation Entropy of Financial Time Series[J]. Nonlinear Dynamics, 2014, 78(4):2921-2939.
[9]古莹奎,承姿辛,朱繁泷. 基于主成分分析和支持向量机的滚动轴承故障特征融合分析[J]. 中国机械工程,2015,26(20):2778-2783.
GU Yingkui, CHENG Zixin, ZHU Fanlong. Rolling Bearing Fault Feature Fusion Based on PCA and SVM[J]. China Mechanical Engineering, 2015, 26(20):2778-2783.
[10]YAN Xiaoan, JIA Minping. A Novel Optimized SVM Classification Algorithm with Multi-domain Feature and Its Application to Fault Diagnosis of Rolling Bearing[J]. Neurocomputing, 2018, 313: 47-64.
[11]姚德臣,杨建伟,程晓卿,等. 基于多尺度本征模态排列熵和SA-SVM的轴承故障诊断研究[J]. 机械工程学报,2018,54(9):168-176.
YAO Dechen, YANG Jianwei, CHENG Xiaoqing, et al. Railway Rolling Bearing Fault Diagnosis Based on Muti-scale IMF Permutation Entropy and SA-SVM Classifier[J]. Journal of Mechanical Engineering, 2018, 54(9):168-176.
[12]孙健,王成华,洪峰,等. 基于人工鱼群优化支持向量机的模拟电路故障诊断[J]. 系统仿真学报,2014,26(4):843-847.
SUN Jian, WANG Chenghua, HONG Feng, et al. Analog Circuit Fault Diagnosis Based on Artificial Fish Swarm Optimization Support Vector Machine[J]. Journal of System Simulation, 2014, 26(4):843-847.
[13]JIANG Xiangyuan, LI Shuai. BAS: Beetle Antennae Search Algorithm for Optimization Problems[J]. International Journal of Robotics and Control, 2018, 1(1):1-5.
[14]GENG Xing, ZHAN Dechuan, ZHOU Zhihua. Supervised Nonlinear Dimensionality Reduction for Visualization and Classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2005, 35(6):1098-1107.
[15]ZHENG Jinde, PAN Haiyang, CHENG Junsheng. Rolling Bearing Fault Detection and Diagnosis Based on Composite Multiscale Fuzzy Entropy and Ensemble Support Vector Machines[J].Mechanical Systems and Signal Processing, 2017, 85: 746-759.
[16]NIU Hongli, WANG Jun, LIU Cheng. Analysis of Crude Oil Markets with Improved Multiscale Weighted Permutation Entropy[J]. Physical A: Statistical Mechanics and Its Applications, 2017, 494: 389-402. |