[1]谢春玲, 戴景民. 燃气轮机故障诊断技术研究综述与展望[J], 汽轮机技术, 2010, 52(1):1-3.
XIE Chunling, DAI Jingmin. The Research Overview and Prospects of Gas Turbine Fault Diagnosis Technique[J].Turbine Technology, 2010, 52(1):1-3.
[2]蒋洪德, 任静, 李雪英. 重型燃气轮机现状与发展趋势[J].中国电机工程学报, 2014, 34(29):5096-5162.
JIANG Hongde, REN Jing, LI Xueying. Status and Development Trend of the Heavy Duty Gas Turbine[J]. Proceedings of the CSEE, 2014, 34(29):5096-5162.
[3]ZHOU D J, ZHANG H S, WENG S L. A Novel Prognostic Model of Performance Degradation Trend for Power Machinery Maintenance[J].Energy, 2014, 78:740-746.
[4]肖力伟, 刘建军, 李晨, 等. 燃气轮机透平叶片流-热-固耦合分析及蠕变寿命预测[J]. 燃气轮机技术, 2018, 31(2):23-28.
XIAO Liwei, LIU Jianjun, LI Chen, et al. Fluid-thermal-mechanical Coupling Analysis and Creep Life Prediction of Gas Turbine Blade[J]. Gas Turbine Technology, 2018, 31(2):23-28.
[5]李慧华. 燃气轮机关键部件健康预测方法研究[D]. 沈阳:沈阳航空航天大学, 2018.
LI Huihua. Study on Health Prediction Methods for Key Components of Gas Turbines[D]. Shenyang:Shenyang Aerospace University, 2018.
[6]ZAIDAN M A, HARRISON R F, MILLS A R, et al. Bayesian Hierarchical Models for Aerospace Gas Turbine Engine Prognostics[J]. Expert Systems with Applications, 2015, 42(1):539-553.
[7]滕伟, 李晓鹤, 张阳阳, 等. 基于数据驱动的燃气轮机剩余寿命预测[J]. 燃气轮机技术, 2017, 30(2):23-27.
TENG Wei, LI Xiaohe, ZHANG Yangyang, et al. Data Driven Based Prognostic of Remaining Useful Life for Gas Turbine[J]. Gas Turbine Technology, 2017, 30(2):23-27.
[8]BARAD S G, RAMAIAH P V, GIRIDHAR R K, et al. Neural Network Approach for a Combined Performance and Mechanical Health Monitoring of a Gas Turbine Engine[J]. Mechanical Systems and Signal Processing, 2012, 27: 729-742.
[9]TSOUTSANIS E, MESKIN N, BENAMMAR M, et al. A Component Map Tuning Method for Performance Prediction and Diagnostics of Gas Turbine Compressors[J].Applied Energy, 2014, 135: 572-585.
[10]ZIO E,PELONI G. Particle Filtering Prognostic Estimation of the Remaining Useful Life of Nonlinear Components[J].Reliability Engineering & System Safety, 2011, 96(3):403-409.
[11]CHEN C, VACHTSEVANOS G, ORCHARD M E. Machine Remaining Useful Life Prediction: an Integrated Adaptive Neuro-fuzzy and High-order Particle Filtering Approach[J].Mechanical Systems and Signal Processing, 2012, 28: 597-607.
[12]AN D, CHOI J H, KIM N H. Prognostics 101:a Tutorial for Particle Filter-based Prognostics Algorithm Using Matlab[J]. Reliability Engineering & System Safety, 2013, 115: 161-169.
[13]ARULAMPALAM M S, MASKELL S, GORDON N,et al. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking[J].IEEE Transactions on Signal Processing, 2002, 50(2):174-188.
[14]冯驰, 王萌, 汲清波. 粒子滤波器重采样算法的分析与比较[J].系统仿真学报, 2009, 21(4):1101-1106.
FENG Chi, WANG Meng, JI Qingbo. Analysis and Comparison of Resampling Algorithms in Particle Filter[J].Journal of System Simulation, 2009, 21(4):1101-1106.
[15]DOUCET A, FREITAS N D, WAN E. The Unscented Particle Filter[J].Proc. NIPS,2001,13:584-590.
[16]DAROOGHEH N, MESKIN N, KHORASANI K. An Improved Particle Filtering-based Approach for Health Prediction and Prognosis of Nonlinear Systems[J]. Journal of the Franklin Institute, 2018, 355(8):3753-3794.
[17]CHENG F, QU L, QIAO W, et al. Enhanced Particle Filtering for Bearing Remaining Useful Life Prediction of Wind Turbine Drivetrain Gearboxes[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6):4738-4748.
[18]BOYCEM P. Gas Turbine Engineering Handbook[M]. 2nd ed. Houston:Gulf Professional Publishing, 2002:17. |