China Mechanical Engineering

Previous Articles     Next Articles

Multidisciplinary Design Optimization of High-speed Pantograph  Based on Collaborative Optimization Algorithm

ZHANG Jing1;CHENG Feifei2;SONG Baolin2;LIU Zhigang2;ZHANG Weihua3   

  1. 1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031
    2. National Rail Transit Electrification and Automation Engineering Technique Research Center, Southwest Jiaotong University, Chengdu, 611756
    3. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, 610031
  • Online:2021-02-25 Published:2021-03-05

[设计与优化]基于协同优化算法的高速受电弓多学科设计优化

张静1;程肥肥2;宋宝林2;刘志刚2;张卫华3   

  1. 1. 西南交通大学机械工程学院,成都,610031
    2. 西南交通大学国家轨道交通电气化与自动化工程技术研究中心,成都,611756
    3. 西南交通大学牵引动力国家重点实验室,成都,610031
  • 基金资助:
    国家自然科学基金(51405401,52072319);
    国家自然科学基金重点项目(U1734202);
    中铁二院工程集团有限责任公司科研项目(2019-32)

Abstract: Considering the influences of interaction and coupling among various disciplines on the design optimization of pantographs, the design demands of different working properties were analyzed. The multidisciplinary design optimization was adopted to establish optimization models of the system and subsystems that include the kinematics, statics, dynamics and control. According to the coupling relationship of design parameters of different disciplines, the collaborative optimization method was adopted to obtain the overall design optimization results of high-speed pantograph. The three-dimensional model of the pantograph was established to verify the validity of the optimized results by ANSYS. The results show that the multidisciplinary collaborative design meets the design requirements of the system and subsystems, and obtain the overall optimal solutions of the pantograph, which enhances the performance of the pantograph, reduces the fluctuation of the contact forces and increases the current collection quality of the pantograph and catenary.

Key words: high-speed pantograph, multidisciplinary design optimization, contact force, active control, structural analysis

摘要: 考虑不同学科间的相互影响及耦合作用对受电弓设计优化的影响,分析了高速受电弓不同性能的设计要求,采用多学科设计优化思想建立了受电弓多学科设计的系统级优化模型及运动学、静力学、动力学和控制学的子系统优化模型;根据不同学科设计参数的耦合关系,采用协同优化方法,获取高速受电弓整体设计优化结果;建立受电弓的三维模型,采用有限元软件ANSYS验证了受电弓优化结果的有效性。结果表明:受电弓多学科协同设计优化不仅满足系统级和各个学科的设计要求,还获得高速受电弓系统的整体最优解或满意解,提高了受电弓的工作性能,降低了弓网接触力的波动,改善了弓网受流质量。

关键词: 高速受电弓, 多学科设计优化, 接触力, 主动控制, 结构分析

CLC Number: