[1]陈无畏,王家恩,汪明磊, 等. 视觉导航智能车辆横向运动的自适应预瞄控制[J]. 中国机械工程, 2014, 25(5): 698-704.
CHEN Wuwei, WANG Jiaen, WANG Minglei, et al. Adaptive Preview Control of Vision Guided Intelligent Vehicle Lateral Movement [J]. China Mechanical Engineering, 2014, 25(5): 698-704.
[2]凤鹏飞, 金会庆, 王慧然, 等. 考虑路面附着和自适应时间系数影响的车道保持控制[J]. 中国机械工程,2019, 30(7): 804-811.
FENG Pengfei, JIN Huiqing, WANG Huiran,et al. Lane Keeping Control by Considering Influences of Road Adhesion and Adaptive Time Coefficient [J]. China Mechanical Engineering, 2019, 30(7): 804-811.
[3]李升波, 关阳, 侯廉, 等. 深度神经网络的关键技术及其在自动驾驶领域的应用[J]. 汽车安全与节能学报, 2019,10(2):119-145.
LI Shengbo, GUAN Yang, HOU Lian,et al. Key Technique of Deep Neural Network and Its Applications in Autonomous Driving[J]. Journal of Automotive Safety and Energy, 2019,10(2):119-145.
[4]王战古, 高松, 邵金菊, 等. 基于深度置信网络的多源信息前方车辆检测[J]. 汽车工程, 2018, 40(5): 554-560.
WANG Zhangu, GAO Song, SHAO Jinju, et al. Front Vehicle Detection with Multi-source Information Based on Deep Belief Network[J]. Automotive Engineering, 2018, 40(5): 554-560.
[5]BOJARSKI M, TESTA D D, DWORAKOWSKI D, et al. End to End Learning for Self-driving Cars[J/OL].(2016-04-25) [2020-12-18]. https://arxiv.org/abs/1604.07316.
[6]BOJARSKI M, YERES P, CHOROMANSKA A, et al. Explaining How a Deep Neural Network Trained with End-to-end Learning Steers a Car[J/OL].(2017-04-25) [2020-12-18]. https://arxiv.org/abs/1704.07911.
[7]CHOWDHURI S, PANKAJ T, ZIPSER K. Multinet: Multi-modal Multi-task Learning for Autonomous Driving[J/OL].(2019-01-14) [2020-12-18]. https://arxiv.org/abs/1709.05581.
[8]CODEVILLA F, MIILLER M, LPEZ A, et al. End-to-end Driving via Conditional Imitation Learning[C]//IEEE International Conference on Robotics and Automation. Brisbane, 2018: 1-9.
[9]CHI L, MU Y. Deep Steering: Learning End-to-end Driving Model from Spatial and Temporal Visual Cues[J/OL].(2017-08-12) [2020-12-18]. https://arxiv.org/abs/1708.03798.
[10]ERAQI H M, MOUSTAFA M N, HONER J. End-to-end Deep Learning for Steering Autonomous Vehicles Considering Temporal Dependencies[J/OL].(2017-11-12) [2020-12-18]. https://arxiv.org/abs/1710.03804.
[11]YANG Z, ZHANG Y, YU J, et al. End-to-end Multi-modal Multi-task Vehicle Control for Self-driving Cars with Visual Perceptions[C]//24th International Conference on Pattern Recognition. Beijing, 2018: 2289-2294.
[12]XU H, GAO Y, YU F, et al. End-to-end Learning of Driving Models from Large-scale Video Datasets[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, 2017: 2174-2182.
[13]CHEN C, SEFF A, KORNHAUSER A, et al. Deepdriving: Learning Affordance for Direct Perception in Autonomous Driving[J/OL].(2015-09-26)[2020-12-18]. https://arxiv.org/abs/1505.00256v3.
[14]SAUER A, SAVINOV N, GEIGER A. Conditional Affordance Learning for Driving in Urban Environments[J/OL].(2018-11-03)[2020-12-18]. http://export.arxiv.org/abs/1806.06498.
[15]MAYANK B, ALEX K, ABHIJIT O. Chauffeurnet: Learning to Drive by Imitating the Best and Synthesizing the Worst[J/OL].(2018-12-07)[2020-12-18]. https://arxiv.org/abs/1812. 03079v1.
[16]焦新宇, 杨殿阁, 江昆, 等. 基于端到端学习机制的高速公路行驶轨迹曲率预测[J]. 汽车工程, 2018, 40(12): 1494-1499.
JIAO Xinyu, YANG Diange, JIANG Kun,et al. Driving Trajectory Curvature Prediction of Vehicle on Highway Based on End-to-end Learning Mechanism[J]. Automotive Engineering, 2018, 40(12): 1494-1499.
|