[1]JOYEE E B, PAN Y. A Fully Three-dimensional Printed Inchworm-inspired Soft Robot with Magnetic Actuation[J]. Soft Robot, 2019, 6(3):333-347.
[2]LIN H T, LEISK G G, TRIMMER B, et al. GoQBot:a Caterpillar-inspired Soft-bodied Rolling Robot[J]. Bioinspiration & Biomimetics, 2011, 6(2):26-40.
[3]PAYNE C J, WAMALA I, ABAH C, et al. An Implantable Extracardiac Soft Robotic Device for the Failing Heart:Mechanical Coupling and Synchronization[J]. Soft Robot, 2017, 4(3):241-250.
[4]RANZANI T, GERBONI G, CIANCHETTI M, et al. A Bioinspired Soft Manipulator for Minimally Invasive Surgery[J]. Bioinspiration & Biomimetics, 2015, 10(3):35-43.
[5]EDWARDS T L, XUE K, MEENINK H C M, et al. First-in-human Study of the Safety and Viability of Intraocular Robotic Surgery[J]. Nature Biomedical Engineering, 2018, 2(5):649-656.
[6]Anon. LINA:Festo, Germany, Has 3 More Robotic Black Technologies:Tentacles, Elephant Trunks, and Arms[EB/OL]. (2017-03-28). http:∥www.sohu.com/a/130780217_115978.
[7]HAWKES E W, BLUMENSCHEIN L H, GREER J D, et al. A Soft Robot That Navigates Its Environment through Growth[J]. Science Robotics, 2017, 2(8):3028-3035.
[8]胡海燕. 半自主式结肠内窥镜机器人系统研究[D]. 哈尔滨:哈尔滨工业大学, 2011.
HU Haiyan. Research on Semi-autonomous Colonoscopic Robot System[D]. Harbin:Harbin Institute of Technology, 2011.
[9]WANG T, GE L, GU G. Programmable Design of Soft Pneunet Actuators with Oblique Chambers Can Generate Coupled Bending and Twisting Motions[J]. Sensors and Actuators A:Physical, 2018, 271:131-138.
[10]BLANC L, DELCHAMBRE A, LAMBERT P. Flexible Medical Devices:Review of Controllable Stiffness Solutions[J]. Actuators, 2017, 6(3):23-54.
[11]闫继宏, 石培沛, 张新彬, 等. 软体机械臂仿生机理、驱动及建模控制研究发展综述[J]. 机械工程学报, 2018, 54(15):1-14.
YAN Jihong, SHI Peipei, ZHANG Xinbin, et al. Review of Biomimetic Mechanism, Actuation, Modeling and Control in Soft Manipulators[J]. Journal of Mechanical Engineering, 2018, 54(15):1-14.
[12]HAYES G J, LIU Y, GENZER J, et al. Self-folding Origami Microstrip Antennas[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(10):5416-5419.
[13]AMEND T R A, BROWN E, RODENBERG N, et al. A Positive Pressure Universal Gripper Based on the Jamming of Granular Material[J]. IEEE Transactions on Robotics, 2012, 28(2):341-350.
[14]WALL V, DEIMEL R, BROCK O. Selective Stiffening of Soft Actuators Based on Jamming [C]∥IEEE International Conference on Robotics & Automation. Seattle, 2015:252-257.
[15]WALKER I D, CARRERAS C, MCDONNELL R, et al. Extension Versus Bending for Continuum Robots[J]. International Journal of Advanced Robotic Systems, 2006, 3(2):258-265.
[16]YANG Y, ZHANG W. ET Arm:Highly Compliant Elephant-trunk Continuum Manipulator[C]∥International Conference on Intelligent Robotics and Applications. Guangzhou, 2014:288-299.
[17]ZHAO R, YAO Y, LUO Y. Development of a Variable Stiffness Over Tube Based on Low-melting-point-Alloy for Endoscopic Surgery[J]. Journal of Medical Devices, 2016, 10(2):021002.
[18]WANG J, WANG S, LI J, et al. Development of a Novel Robotic Platform with Controllable Stiffness Manipulation Arms for Laparoendoscopic Single-site Surgery (LESS)[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2017, 14(5):e1838.
[19]ALAMBEIGI F, SEIFABADI R, ARMAND M. A Continuum Manipulator with Phase Changing Alloy [C]∥IEEE International Conference on Robotics & Automation. Stockholm, 2016:758-764.
[20]HAO Y, WANG T, XI F, et al. A Variable Stiffness Soft Robotic Gripper with Low-melting-point Alloy [C]∥Proceedings of the 36th Chinese Control Conference. Dalian, 2017:6781-6786.
[21]THIRUMALESHWAR M. Fundamentals of Heat and Mass Transfer[J]. Staff General Research Papers, 1990, 27(2):139-162.
|